Computergrafik und Farbmetrik

Farbsysteme, PostScript, geräteunabhängige CIE-Farben

Prof. Dr. Klaus Richter

VDE-VERLAG GMBH · Berlin · Offenbach

Technische Akademie Wuppertal

Lektor: Dipl.-Ing. (Univ.) Roland Werner Titelillustration: Manfred Zapp

Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Computergrafik und Farbmetrik / Technische Akademie Wuppertal. Klaus Richter. – Berlin ; Offenbach : VDE-VERLAG (Elektrowissen aktuell) ISBN 3_8007_1775_1 NE: Richter, Klaus; Technische Akademie <Wuppertal> Buch. – 1996

Computergrafik und Farbmetrik / Technische Akademie

Wuppertal. Klaus Richter. – Berlin ; Offenbach : VDE-VERLAG
 (Elektrowissen aktuell)
 ISBN 3_8007_1775_1
NE: Richter, Klaus; Technische Akademie <Wuppertal>
 CD-ROM. – 1996

ISBN 3_8007_1775_1

© 1996 VDE-VERLAG GMBH, Berlin und Offenbach Bismarkstr. 33, D-10625 Berlin

Alle Rechte vorbehalten

Druck: Druckerei Heenemann, Berlin

Inhalt

1	Farbgrafik	. 17
1.1	BAM-Laboratorium: Farbwiedergabe	. 18
2	Farbe und Farbsehen: Grundlagen	. 23
2.1	Farbenvielfalt	. 23
2.2	Farbkörper	. 25
2.3	Elementarfarben	. 27
2.4	Symmetrischer Bunttonkreis	. 28
2.5	Farben mit maximaler Buntheit	. 29
2.6	Farbmerkmale Buntheit und Helligkeit	. 30
2.7	Farbmerkmale Schwarzheit (Brillantheit) und Weißheit	. 31
2.8	Farbspektrum und Elementarfarben	. 33
2.8.1	Hellvalenz und Helligkeit	. 33
2.8.2	Buntvalenz und Buntheit	. 34
2.9	Spektrales Farbmischgerät und Reflexionsfaktoren	. 38
2.10	Fluoreszenz	. 40
2.11	Retroreflexion	. 42
2.12	Normfarbwerte und Normfarbtafel	. 44
2.13	Farbmischung	. 47
2.13.1	Dichromatische additive Farbmischung	. 47
2.13.2	Trichromatische additive Farbmischung	51
2.13.3	Trichromatische subtraktive Farbmischung	55
2.14	Strahlung	58
2.15	Kontrast	60
2.15.1	Unbuntkontrast	60
2.15.2	Buntkontrast	62
3	Normfarbwerte und Farbmessung	65
3.1	Gleichheitsverfahren für Normfarbwert-Ermittlung	68
3.2	Spektralverfahren für Normfarbwert-Ermittlung	68
3.2.1	Spektrometrie	. 72
3.2.2	Farbvalenzmetrische Auswertung	. 72
3.3	Dreibereichsverfahren für Normfarbwert-Ermittlung	. 74
3.4	Allgemeines zur Farbmessung	. 75

3.4.1	Lichtquellen	75
3.4.2	Oberflächen und Reflexion	76
3.4.3	Optische Strahlenführung	78
3.4.4	Meßgeometrien	78
4	Besondere Eigenschaften des Farbensehens	83
4.1	Farbstufung leuchtdichtegleicher Farben	83
4.2	Farbschwellen leuchtdichtegleicher Farben	85
4.3	Farbstufung, Farbschwellen und Leuchtdichte	87
4.4	CIELAB-Farben in Farbdokumenten	89
4.5	CIELAB-Farbenraum und Farbarten (a', b')	91
4.6	Farbstufung im Farbartdiagramm (a', b')	92
4.6.1	Farbstufung im OSA-Farbsystem	92
4.6.2	Farbstufung im Munsell-Farbsystem	94
4.7	Farbschwellen im Farbartdiagramm (<i>a</i> ", <i>b</i> ")	97
4.7.1	Farbschwellen-Experimente von MacAdam	97
4.7.2	Farbschwellen-Experimente von <i>Richter</i> 1	100
4.8	Unbunt-Schwellen, Darbietungszeit und Leuchtdichte 1	104
4.9	Zwei Schwarz-Weiß-Prozesse für unbunte Farben 1	107
4.10	Rezeptorempfindlichkeiten linear und logarithmisch 1	109
4.11	Konstante U-Hellempfindlichkeit und P-D-Adaptation 1	113
4.12	Rot-Grün-Farbsignale als Funktion der Leuchtdichte 1	117
4.13	Gelb-Blau-Farbsignale als Funktion der Leuchtdichte 1	119
4.14	Leuchtdichte und historische Farb-Linienelemente 1	121
4.15	Doppel-Linienelement für Schwellen 1	123
4.16	Dreifach-Linienelement für Schwellen und Stufung 1	125
4.17	Symmetrisches Farbschwellensehen 1	128
4.18	Symmetrisches Modell für Farbschwellen 1	130
4.19	Empfindlichkeiten und symmetrische N"-Sättigungen 1	134
4.20	Empfindlichkeiten und unsymmetrische J"-Sättigungen 1	137
4.21	Farbunterscheidung und Umfeldleuchtdichte 1	140
4.22	Experimentelle Leuchtdichte- und Buntschwellen 1	143
4.23	Hell- sowie Buntschwellen und Leuchtdichte 1	144
5	Reproduktionstechnik und Normfarbwerte 1	147
5.1	Reproduktionsverfahren 1	147
5.1.1	Reproduktion: Elementar-, Grund- und Mischfarben 1	147

5.1.2	Reproduktion: additive und subtraktive Farbmischung	149
5.2	Farbwiedergabe in der Farbfotografie	152
5.3	Farbwiedergabe im Mehrfarbendruck	155
5.4	Farbwiedergabe im Farbfernsehen	164
6	Schnittstellen, Farbauswahl und Farbstufung	171
6.1	Digitaler Farbbildspeicher und Farbanzahl	171
6.2	Farbgrafik und CEPT-Standard	174
6.2.1	Farbbildschirm und Reproduktion von CEPT-Farbbildern	174
6.2.2	CEPT-Farben, Farb-Codierung und Farb-Ordnung	176
6.2.3	Farbmonitor-Testbild mit CEPT-Farben	183
6.2.4	Holen und Ändern von Farbbildern mit CEPT-Farben	183
6.3	Filmvorlage, Farbscanner und Farbwiedergabe	185
6.4	Kennlinien für Farbmonitor und Druckreproduktion	189
7	Reproduktion mit Druckertechniken	197
7.1	Reproduktion: 4096 Farben mit Farbmatrixdrucker	197
7.2	Fotomechanische Druckfilm-Herstellung am PC	201
7.3	Druckfilm-Herstellung mit Laserdruckern	203
7.3.1	Rasterabstand Laserdrucker	203
7.3.1 7.3.2	Rasterabstand Laserdrucker Rasterabstand Farbmatrixdrucker	203 204
7.3.1 7.3.2 7.3.3	Rasterabstand Laserdrucker Rasterabstand Farbmatrixdrucker Rasterabstand und Druckfilm-Herstellung	203 204 204
7.3.1 7.3.2 7.3.3 7.4	Rasterabstand Laserdrucker Rasterabstand Farbmatrixdrucker Rasterabstand und Druckfilm-Herstellung Text-Bild-Editoren und digitaler Farbspeicherbedarf	203204204205
 7.3.1 7.3.2 7.3.3 7.4 8 	Rasterabstand Laserdrucker Rasterabstand Farbmatrixdrucker Rasterabstand und Druckfilm-Herstellung Text-Bild-Editoren und digitaler Farbspeicherbedarf PostScript und CIE-Farbräume	203204204205207
 7.3.1 7.3.2 7.3.3 7.4 8 8.1 	Rasterabstand Laserdrucker	 203 204 204 205 207 207
7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2	Rasterabstand Laserdrucker	 203 204 204 205 207 207 208
 7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 	Rasterabstand Laserdrucker	 203 204 204 205 207 207 208 211
 7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 	Rasterabstand Laserdrucker	 203 204 204 205 207 207 208 211 216
 7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 	Rasterabstand Laserdrucker	 203 204 204 205 207 207 208 211 216 218
7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 8.6	Rasterabstand Laserdrucker	 203 204 204 205 207 207 208 211 216 218 228
7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7	Rasterabstand Laserdrucker	 203 204 204 205 207 207 208 211 216 218 228 233
7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Rasterabstand Laserdrucker	 203 204 205 207 207 208 211 216 218 228 233 236
 7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 	Rasterabstand Laserdrucker	 203 204 205 207 207 208 211 216 218 228 233 236 238
7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	Rasterabstand Laserdrucker	 203 204 204 205 207 208 211 216 218 228 233 236 238 239
7.3.1 7.3.2 7.3.3 7.4 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11	Rasterabstand Laserdrucker	 203 204 204 205 207 208 211 216 218 228 233 236 238 239 240

8.13	Farbmonitor-Farbraum-Transformationen 2	242
8.14	CIELAB-Farbraum-Transformationen	243
8.15	Optimierung der Farbwiedergabe mit CIE-Testfarben 2	244
8.16	Definition und Reproduktion der 17 CIE-Testfarben 2	246
8.17	Definition und Reproduktion von 20 L*-Helligkeiten 2	248
8.18	Definition und Reproduktion von 20 CIELAB-Farben 2	250
8.19	CIE-Testfarben-Bilddatei auf Kodak-Foto-CD 2	252
8.20	Optimierung der Kodak-Foto-CD-Bildwiedergabe 2	256
8.21	Optimierung der Farbmonitor-Bildwiedergabe 2	259
9	Literatur	263
9.1	Bücher 2	263
9.2	Normen und ähnliche Veröffentlichungen 2	264
9.3	Einzeldarstellungen 2	267
9.4	PostScript-Literatur	272
10	Übungsaufgaben und farbmetrische Koordinaten	273
10 10.1	Übungsaufgaben und farbmetrische Koordinaten	273 273
10 10.1 10.1.1	Übungsaufgaben und farbmetrische Koordinaten 2 Übung 1: Farbvalenzmetrische Auswertung 2 Normspektralwerte für das Wellenlängenintervall 10 nm 2	273 273 275
10 10.1 10.1.1 10.1.2	Übungsaufgaben und farbmetrische Koordinaten 2 Übung 1: Farbvalenzmetrische Auswertung 2 Normspektralwerte für das Wellenlängenintervall 10 nm 2 Normspektralwerte (20 nm) für Optimalfarben-Berechnung 2	273 273 275 276
10 10.1 10.1.1 10.1.2 10.1.3	Übungsaufgaben und farbmetrische Koordinaten 2 Übung 1: Farbvalenzmetrische Auswertung 2 Normspektralwerte für das Wellenlängenintervall 10 nm 2 Normspektralwerte (20 nm) für Optimalfarben-Berechnung 2 Normfarbwerte der Optimalfarben 2	273 273 275 276 277
10 10.1 10.1.1 10.1.2 10.1.3 10.2	Übungsaufgaben und farbmetrische Koordinaten 2 Übung 1: Farbvalenzmetrische Auswertung 2 Normspektralwerte für das Wellenlängenintervall 10 nm 2 Normspektralwerte (20 nm) für Optimalfarben-Berechnung 2 Normfarbwerte der Optimalfarben 2 Übung 2: Elementar- und Reproduktionsfarben 2	273 273 275 276 276 277
10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1	Übungsaufgaben und farbmetrische Koordinaten 2 Übung 1: Farbvalenzmetrische Auswertung 2 Normspektralwerte für das Wellenlängenintervall 10 nm 2 Normspektralwerte (20 nm) für Optimalfarben-Berechnung 2 Normfarbwerte der Optimalfarben 2 Übung 2: Elementar- und Reproduktionsfarben 2 Elementarfarben nach Miescher 2	273 273 275 276 276 277 278 278
10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1 10.2.2	Übungsaufgaben und farbmetrische Koordinaten 2 Übung 1: Farbvalenzmetrische Auswertung 2 Normspektralwerte für das Wellenlängenintervall 10 nm 2 Normspektralwerte (20 nm) für Optimalfarben-Berechnung 2 Normfarbwerte der Optimalfarben 2 Übung 2: Elementar- und Reproduktionsfarben 2 Elementarfarben nach Miescher 2 Grund- und Mischfarben des Norm-Farbfernsehens 2	273 273 275 276 276 277 278 279 280
10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1 10.2.2 10.2.3	Übungsaufgaben und farbmetrische Koordinaten2Übung 1: Farbvalenzmetrische Auswertung2Normspektralwerte für das Wellenlängenintervall 10 nm2Normspektralwerte (20 nm) für Optimalfarben-Berechnung2Normfarbwerte der Optimalfarben2Übung 2: Elementar- und Reproduktionsfarben2Elementarfarben nach Miescher2Grund- und Mischfarben des Norm-Farbfernsehens2Grund- und Mischfarben des Norm-Druckprozesses2	273 273 275 276 277 278 279 280 281
10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1 10.2.2 10.2.3 10.2.4	Übungsaufgaben und farbmetrische Koordinaten2Übung 1: Farbvalenzmetrische Auswertung2Normspektralwerte für das Wellenlängenintervall 10 nm2Normspektralwerte (20 nm) für Optimalfarben-Berechnung2Normfarbwerte der Optimalfarben2Übung 2: Elementar- und Reproduktionsfarben2Elementarfarben nach Miescher2Grund- und Mischfarben des Norm-Farbfernsehens2Grund- und Mischfarben eines Test-Druckprozesses2	273 273 275 276 277 278 278 279 280 281 282
10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.3	Übungsaufgaben und farbmetrische Koordinaten2Übung 1: Farbvalenzmetrische Auswertung2Normspektralwerte für das Wellenlängenintervall 10 nm2Normspektralwerte (20 nm) für Optimalfarben-Berechnung2Normfarbwerte der Optimalfarben2Übung 2: Elementar- und Reproduktionsfarben2Elementarfarben nach Miescher2Grund- und Mischfarben des Norm-Farbfernsehens2Grund- und Mischfarben eines Test-Druckprozesses2Koordinaten der niederen Farbmetrik2	273 273 275 276 277 278 279 280 281 282 283
10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.3 10.4	Übungsaufgaben und farbmetrische Koordinaten2Übung 1: Farbvalenzmetrische Auswertung2Normspektralwerte für das Wellenlängenintervall 10 nm2Normspektralwerte (20 nm) für Optimalfarben-Berechnung2Normfarbwerte der Optimalfarben2Übung 2: Elementar- und Reproduktionsfarben2Elementarfarben nach Miescher2Grund- und Mischfarben des Norm-Farbfernsehens2Grund- und Mischfarben eines Test-Druckprozesses2Koordinaten der niederen Farbmetrik2Koordinaten der höheren Farbmetrik2	273 273 275 276 277 278 279 280 281 282 283 284

Bilder

Bild 1_1 Schema Verbindungen Farbgrafik 8280_1	17
Bild 1_2 Schema Optimierung Farbwiedergabe 8280_3	17
Bild 1_3 Kennzeichnung und Beurteilung der Farbwiedergabe 8280_5	18
Bild 1_4 Farbwiedergabekette: Farboriginal -> Farbfilm 8281_1	20
Bild 1_5 Farbwiedergabekette: Farbfilm -> Farbdruck 8281_3	20
Bild 1_6 Farbwiedergabekette: Original -> Film -> Druck 8281_5	21
Bild 1_7 Forderungen an Farbdiamaterial-Scanner 8191_3	22
Bild 2_1 Teilbereiche von Farbe und Farbsehen 8280_7	23
Bild 2_2 Farbenvielfalt 8510_1	24
Bild 2_3 Unbunte Farben 8510_2	24
Bild 2_4 Bunte Farben 8510_3	24
Bild 2_5 <i>OLV</i> *-Farbdaten 8511_1	25
Bild 2_6 Farbdoppelkegel 8520_1	26
Bild 2_7 RG-Bunttonschnitt 8520_2	26
Bild 2_8 JB-Bunttonschnitt 8520_3	26
Bild 2_9 Elementarfarbe J 8520_5	27
Bild 2_10 Elementarfarbe <i>B</i> 8520_6	27
Bild 2_11 Elementarfarbe G 8520_7	28
Bild 2_12 Elementarfarbe <i>R</i> 8520_8	28
Bild 2_13 Symmetrischer Bunttonkreis achtteilig 8670_3	29
Bild 2_14 Symmetrischer Bunttonkreis sechzehnteilig 8670_4	29
Bild 2_15 Maximale Buntheit 8521_1	30
Bild 2_16 Konstante Buntheit 8521_2	30
Bild 2_17 Konstante Helligkeit 8521_3	31
Bild 2_18 Konstante Schwarz- und Weißheit 8521_5, 8521_6	32
Bild 2_19 Schwarz-, Weiß-, Brillant- oder Leuchtheit 8580_2, 8580_4	32
Bild 2_20 Sichtbare Strahlung 8521_7	33
Bild 2_21 Spektrale Hell(wert)-Empfindlichkeit 8530_1	33
Bild 2_22 Spektrale Helligkeits-Empfindlichkeit 8530_2	34
Bild 2_23 RG-Buntwerte 8530_5	35
Bild 2_24 JB-Buntwerte 8530_6	35
Bild 2_25 Räumliche Farbwerte 8530_3	36
Bild 2_26 <i>RG</i> -Buntheiten 8530_7	36
Bild 2_27 JB-Buntheiten 8530_8	37
Bild 2_28 Räumliche Farbheiten 8530_4	37

Bild 2_29 Spektraler Reflexionsfaktor Elementarfarben 8531_1 bis 8531_4 38 Bild 2_30 Prinzip Spektrales Farbmischgerät 8321_6...... 39 Bild 2_31 Reflexionsfaktoren von vier CIE-Testfarben 8531_5 39 Bild 2_33 Spektrale Erscheinung Fluoreszenz 8540_1...... 41 Bild 2_34 Schema Fluoreszenz 8540_2...... 41 Bild 2_35 Spektrale Erscheinung Retroreflexion 8540_3...... 43 Bild 2_37 Normspektralwerte (bunt) 2^o-Normvalenzsystem 8540_5....... 44 Bild 2_41 Dichromatische additive Optimalfarben V, Y 8541_1, 8541_2.... 47 Bild 2_43 Bunttonkreis sechsteilig 8541_4...... 49 Bild 2_44 Dichromatische Farbwerte in Farbmetrik 8541_5...... 49 Bild 2_45 Dichromatische Farbwerte in Digitaltechnik 8541_6...... 50 Bild 2_46 Farbheiten in Farbmetrik und Digitaltechnik 8541_7, 8541_8.... 50 Bild 2_47 Trichromatische additive Farbmischung 8550_1 51 Bild 2_48 Additive Grund-, Misch- und Elementarfarben 8551_3...... 51 Bild 2_49 Trichromatische additive Optimalfarben 8550_2, 8550_3, 8550_4 52 Bild 2_51 Trichromatische Farbwerte OLV in Digitaltechnik 8550_6...... 54 Bild 2_52 Farbheiten OLV* in Farbmetrik, Digitaltechnik 8550_7, 8550_8 54 Bild 2_53 Trichromatische subtraktive Farbmischung 8551_1 55 Bild 2_54 Subtraktive Grund-, Misch- und Elementarfarben 8551_4...... 56 Bild 2 55 Trichromatische subtraktive Farben 8571 4,8571 6,8571 7...... 56 Bild 2 56 Farbwerte CMY in Farbmetrik 8551 5...... 57 Bild 2_57 Farbwerte CMY in Digitaltechnik 8551_6...... 57 Bild 2_58 Farbheiten CMY* in Farbmetrik, Digitaltechnik 8551_7, 8551_858 Bild 2_59 Reflexionsfaktor metamerer Farben 8321_5...... 59 Bild 2_60 Relative spektrale Strahlungen 8531_8, 8531_7...... 59 Bild 2_61 Unbuntkontrast: Umfeld und Feldgröße 8560_6, 8560_7, 8560_8.. 60 Bild 2_62 Buntkontrast: Umfeld und Feldgröße 8561_3, 8561_4...... 62 Bild 2_63 Einfluß Umfeld auf RG-Farbstufung 8561_7, 8520_2, 8561_5...... 63 Bild 2_64 Einfluß Umfeld auf *JB*-Farbstufung 8561_8, 8520_3, 8561_6...... 64

Bild 3_1 Normspektralwerte (bunt) 2 ^o -Normvalenzsystem 8540_51	65
Bild 3_2 Normspektralwerte 2 ^o -Normvalenzsystem 8310_1	65
Bild 3_3 Normfarbtafel (x , y) 2 ^o -Normvalenzsystem 8310_20	66
Bild 3_4 Normspektralwerte 10 ^o -Normvalenzsystem 8310_3	67
Bild 3_5 Normfarbtafel 10°-Normvalenzsystem 8310_4	67
Bild 3_6 Relative Strahlung Tageslichtphasen 8311_3	69
Bild 3_7 Relative Strahlung nach <i>Planck</i> 8311_4	69
Bild 3_8 Strahlung Normlichtarten <i>D65</i> und <i>A</i> 8311_2	70
Bild 3_9 Schema farbvalenzmetrische Auswertung 8310_5 bis 8310_8	71
Bild 3_10 Spektralangleich Dreibereichsfarbmeßgerät 8311_1	75
Bild 3_11 Spiegel-Reflexion 8311_5	76
Bild 3_12 Diffuse Reflexion 8311_6	76
Bild 3_13 Schwach gerichtete Reflexion 8311_7	77
Bild 3_14 Stark gerichtete Reflexion 8311_8	77
Bild 3_15 Retroreflexion 8320_1	77
Bild 3_16 Meß- oder Beobachtungs-Geometrie gerichtet 8320_2, 8320_3	79
Bild 3_17 Meß- oder Beobachtungs-Geometrie Kugel 8320_4 bis 8320_6.	79
Bild 3_18 Messung spektraler Reflexionsfaktor 8320_7, 8320_8	81
Bild 4_1 Farbstufung Buntheitsreihe $T-D65-P$ 8760_1	83
Bild 4_2 Farbstufung Buntheitsreihe <i>V</i> – <i>D</i> 65– <i>Y</i> 8760_2	84
Bild 4_3 Farbstufung Buntheitsreihen $T-D65$ und $D65-P$ 8760_5	84
Bild 4_4 Farbstufung und Farbartdifferenz 8760_6	85
Bild 4_5 Farbschwellen und Farbartdifferenz 8760_7	85
Bild 4_6 Farbschwellen und zwei visuelle Prozesse 8760_8	86
Bild 4_7 Farbstufung Helligkeitsreihe $N-D65-W$ 8761_1	87
Bild 4_8 Helligkeitsstufung und Leuchtdichtedifferenz 8761_2	88
Bild 4_9 Unbuntschwellen und Hellbezugswertdifferenz 8761_3	88
Bild 4_10 Unbuntschwellen und Leuchtdichtedifferenz 8761_4	89
Bild 4_11 Schnittstellen im Bereich Bildverarbeitung 8690_11	90
Bild 4_12 Farbenräume, Farbwerte, -merkmale und -arten 8190_3	91
Bild 4_13 OSA-Farbmuster in Normfarbtafel 8220_1	92
Bild 4_14 OSA-Farbmuster, Farbartdiagramme 8220_2 bis 8220_6	93
Bild 4_15 OSA-Farbmuster und Helligkeit 8210_5, 8230_5	94
Bild 4_16 <i>Munsell</i> -Farbmuster und Helligkeit 8110_1, 8120_1, 8130_1	95
Bild 4_17 <i>Munsell</i> -Farbmuster, Farbartdiagramme 8120_2, 8120_3, 8120_5	96
Bild 4_18 <i>Munsell</i> -Farbmuster und Helligkeit 8110_5, 8130_5	96

Bild 4_19 Farbschwellen MacAdam 8140_1 97 Bild 4_22 RG-Farbschwellen Richter 8150_1, 8150_3, 8150_7...... 100 Bild 4_23 JB-Farbschwellen Richter 8160_1, 8160_3, 8160_7...... 101 Bild 4_24 OC-Farbschwellen Richter 8170_1, 8170_3, 8170_7...... 102 Bild 4_25 LM-Farbschwellen Richter 8180_1, 8180_3, 8180_7..... 102 Bild 4_26 Farbschwellen, Farbartdiagramme 8151_7, 8161_7, 8171_7, 8181_103 Bild 4_27 Leuchtdichte-Unterscheidung in log-lin-Darstellung 9080_6.104 Bild 4_28 Leuchtdichte-Unterscheidung in log-log-Darstellung 9080_2 105 Bild 4_29 Leuchtdichte-Unterscheidung und Darbietungszeit 9081_6... 105 Bild 4_30 Leuchtdichte-Unterscheidung und Darbietungszeit 9081_2... 106 Bild 4_31 Leuchtdichte-Unterscheidung und Umfeld 8751_1, 8751_2..... 107 Bild 4_32 Leuchtdichte-Unterscheidung, zwei Prozesse 8751_3, 8751_4. 108 Bild 4_33 Rezeptorempfindlichkeiten, Modell λ 8620_4, 8620_8...... 109 Bild 4_34 Modell Rezeptorempfindlichkeiten 8780_1, 8780_2..... 109 Bild 4_35 Rezeptorempfindlichkeiten, Modell v 8621_4, 8621_8..... 110 Bild 4_36 Y- und U-Empfindlichkeit, Modell λ 8630_5, 8630_7...... 111 Bild 4_38 P-, D- und U-Empfindlichkeit, -Sättigung 9050_1,9050_2...... 113 Bild 4_39 P"-, D"- und U"-Empfindlichkeit, -Sättigung 9051_1, 9051_2.. 113 Bild 4_40 P"-, D"- und U"-Empfindlichkeit, -Sättigung 9060_1, 9060_2.. 114 Bild 4_41 P"-, D"- und U"-Empfindlichkeit, -Sättigung 9061_1, 9061_2.. 115 Bild 4_42 RG-Farbsignale und Leuchtdichte 8730_1, 8730_2..... 117 Bild 4_43 RG-Farbsignale und Leuchtdichte 8730_3, 8730_4...... 118 Bild 4_44 BJ-Farbsignale und Leuchtdichte 8731_1, 8731_2..... 119 Bild 4 45 BJ-Farbsignale und Leuchtdichte 8731 3, 8731 4..... 120 Bild 4_46 Linien-Elemente, Leuchtdichte, Farbwerte 8720_5, 8720_6..... 121 Bild 4_47 Linien-Elemente der Farbmetrik 8720_7, 8720_8..... 122 Bild 4_48 Unbuntteil- und Unbunt-Signale 8720_1,8720_2...... 123 Bild 4_49 Unbuntsignale, Unterscheidungsvermögen 8720_3, 8720_4..... 123 Bild 4_50 Doppel-Linienelement von Richter 8780_7, 8780_8..... 124 Bild 4_51 Übergang von der Licht- zur Farbmetrik 8240_2..... 124 Bild 4_52 Schwellen und Stufungsprozeß 8830_7, 8831_7...... 125 Bild 4_53 Farbcodierung der Farbsignale 8910_2, 8910_4..... 125 Bild 4_54 *GR*-Farbsignale: Schwellen und Skalierung 8931_1, 8931_2.... 126

Bild 4_55 *GR*-Farbsignale: Schwellen und Skalierung 8931_3, 8931_4.... 127 Bild 4_56 Komplementäre schmalbandige Optimalfarben 8570_3...... 128 Bild 4_57 Komplementäre breitbandige Optimalfarben 8570_4...... 129 Bild 4_58 Rezeptor, U"-, N"- und J"-Empfindlichkeit 9011_1, 9011_3..... 130 Bild 4_59 Rezeptor-, U"- und J"-Sättigung 9011_5, 9011_7...... 133 Bild 4_60 N"-Empfindlichkeit, -Sättigung 9350_1, 9350_2, 9360_1, 9360_2. 134 Bild 4_61 N"-Empfindlichkeit, -Sättigung 9450_3, 9450_4, 9460_3, 9460_4. 135 Bild 4_62 Symmetrische U"N"-Farbarttafel 9470_1,9471_1..... 136 Bild 4_63 J"-Empfindlichkeit, -Sättigung 9350_5, 9350_6, 9360_5, 9360_6... 137 Bild 4_64 J"-Empfindlichkeit, -Sättigung 9450_7, 9450_8, 9460_7, 9460_8... 138 Bild 4_65 Unsymmetrische U"J"-Farbarttafel 9470_2, 9471_2...... 139 Bild 4_66 Unsymmetrische U"J"N"-Farbarttafel 9470_3...... 139 Bild 4_67 Umbuntsignale, -Unterscheidung, Umfeld 9381_5, 9381_6..... 140 Bild 4_68 Buntsignale, -Unterscheidung, Umfeld 9380_5 bis 9380_8..... 141 Bild 4_69 Symmetrische U"- und J"-Sättigung 9461_7, 9461_8..... 143 Bild 4_70 Unbunt- und Buntschwellen als Funktion von Y 8190_7...... 144 Bild 4_71 *RG*-Buntschwellen und Farbartdifferenz 8240_1..... 145 Bild 5_1 Symmetrischer Elementarfarbkreis vierteilig 8670_1..... 147 Bild 5_2 Bunttonkreis sechsteilig 8670_5...... 148 Bild 5_3 Grund- und Mischfarben im Reproduktionsbereich 8670_6..... 148 Bild 5_4 Grundfarben: Drei- und Sechs-Buntfarbendruck 8670_7...... 148 Bild 5_5 Grundfarben: Sieben- und Vier-Farbendruck 8670_8...... 149 Bild 5_6 Additive Dreifarbenmischung im Farbfernsehen 8671_5 149 Bild 5_7 Additive Zweifarbenmischung im Farbfernsehen 8671_6...... 150 Bild 5_8 Additive Zweifarbenmischung im Farbfernsehen 8671_7...... 150 Bild 5_9 Additive Zweifarbenmischung im Farbfernsehen 8671_8...... 150 Bild 5 10 Subtraktive Farbmischung im Farbdiafilm 8671 1..... 151 Bild 5_11 Subtraktive Farbmischung im Drei-Farbendruck 8671_2...... 151 Bild 5_12 Subtraktive Farbmischung im Vier-Farbendruck 8671_3...... 151 Bild 5_13 Farbschichten im Vier-Farbendruck 8671_4...... 152 Bild 5_14 Farbdia-Filmschichten unbelichtet und belichtet 8690_5, 8690_d 52 Bild 5_15 Spektrale Transmission Filmtestfarben 8330_1 bis 8330_6..... 153 Bild 5_16 Optimal-Film-Testfarben in Normfarbtafel (x, y) 8331_1..... 154 Bild 5_17 Reelle Film-Testfarben in Normfarbtafel (x, y) 8331_2...... 155 Bild 5_18 Subtraktive Grundfarben in Normfarbtafel (x, y) 8331_6...... 156 Bild 5_19 Subtraktive Farbmischung im Drei-Farbendruck 8671_2...... 157

Bild 5_20 Farbpaletten $N^* = 0$ im Farbendruck 8414_1, 8424_1, 8434_1.... 157 Bild 5 21 Farbpaletten $C^* = 0$ und 8 im Farbendruck 8444 1,8445 1..... 158 Bild 5_22 Farbpaletten $N^* = 8$ im Farbendruck 8415_1, 8425_1, 8435_1.... 159 Bild 5_23 Hellbezugswerte Farbreihen W-N, L-N 8590_1, 8590_8...... 160 Bild 5_24 Hellbezugswerte Farbreihen Y, M, C-N 8590_5 bis 8590_7...... 161 Bild 5_25 Hellbezugswerte Farbreihen W-Y, M, C 8590_2 bis 8590_4..... 162 Bild 5_26 Farbauszüge Unbuntaufbau 9491_4 bis 9491_8..... 163 Bild 5_27 Additive Farbmischungen Farbfernsehen 8671_51 bis 8671_8. 164 Bild 5_28 CIE-Testfarben in Normfarbtafel (x, y) 8331_3......165 Bild 5_29 Ideale Spektralwerte Farbfernsehkamera 8540_71...... 166 Bild 5_30 Digitalwerte von Farbreihen W-N und L-N 9091_1,9091_8... 167 Bild 5_31 Digitalwerte von Farbreihen Y, M, C-N 9091_5 bis 9091_7..... 169 Bild 5_32 Digitalwerte von Farbreihen W-Y, M, C 9091_2 bis 9091_4..... 170 Bild 6_1 Schnittstellen in der Bildverarbeitung 8690_12...... 171 Bild 6_2 Bitspeicher, -ebenen und acht Farben 8660_1..... 171 Bild 6_3 Bitspeicher, -ebenen und 64 Farben 8660_2...... 172 Bild 6_4 Bitspeicher, -ebenen und 512 Farben 8660_3 172 Bild 6_5 Bitspeicher, -ebenen und 4096 Farben 8660_4 172 Bild 6_6 Bitebenen und 64 Farben 8660_5, 8660_6...... 173 Bild 6_7 Bitebenen und 4096 Farben 8660_7, 8660_8...... 173 Bild 6_8 Numerierung der Btx-Standardfarben 8711_4 174 Bild 6_9 Trichromatische Farbwerte in Digitaltechnik 8550_61 174 Bild 6_10 Trichromatische Farbheiten in Digitaltechnik 8550_81 175 Bild 6_11 *CEPT*-Digitalwerte von Reihen *W*-*Y*, *W*-*M* 9091_2, 9091_3... 176 Bild 6_12 Numerierung von vier CEPT-Farbreihen 8711_1 bis 8711_4... 177 Bild 6_13 Benennung von vier CEPT-Farbreihen 8711_5 bis 8711_8..... 179 Bild 6 14 Farbensechseck von vier CEPT-Farbkreisen 8710 1 bis 8710 481 Bild 6_15 Farbensechseck von vier CEPT-Farbreihen 8710_5 bis 8710_8182 Bild 6_16 Farbmonitor-Testbild mit CEPT-Farben 8490_1 183 Bild 6_17 BAM-Leitseite im Btx-Telekomsystem 8490_2..... 184 Bild 6_18 Programm Anderung BAM-Leitseite D8210_4...... 184 Bild 6 19 Veränderte BAM-Leitseite am PC 8490 3..... 185 Bild 6_20 Schnittstellen in der Bildverarbeitung 8690_13..... 185 Bild 6_21 Einflußparameter Farbbildabtastung 8690_2 186 Bild 6_22 Variation Filmtransmission mit Belichtung 8680_3 186 Bild 6_23 Relative Empfindlichkeit Laserscanner 8680_4...... 187

Bild 6_24 Relative Empfindlichkeit Breitband-Scanner 8680_5	187
Bild 6_25 Relative Empfindlichkeit idealer Scanner 8680_6	188
Bild 6_26 Spektrale Reflexion metamere Farben 8680_7	188
Bild 6_27 Farbwiedergabe-Index und Farbabstand 8690_3	189
Bild 6_28 Schnittstellen in der Bildverarbeitung 8690_14	190
Bild 6_29 gleichabständige Grau-stufung 8691_1	190
Bild 6_30 Kennlinien für weiße und schwarze Umgebung 8691_2	191
Bild 6_31 Helligkeit und Hellbezugswert für zwei Umfelder 8691_3	191
Bild 6_32 Lineare Scannersignale und Helligkeit 8691_4	192
Bild 6_33 Farbheiten und Rasterflächendeckung 8681_5	192
Bild 6_34 Farbheiten und Rasterflächendeckung 8691_6	193
Bild 6_35 Schnittstellen in der Druckindustrie 8690_4	194
Bild 6_36 Rasterzelle mit 16 Graustufen 8990_2, 8991_1, 8991_7, 8991_8	195
Bild 7_1 Druckpositionen Farbmatrixdrucker 8340_3	197
Bild 7_2 Druckpositionen Farbmatrixdrucker 8340_4, 8340_5	199
Bild 7_3 Kennlinien Hellbezugswertund Flächendeckung 8691_5	200
Bild 7_4 Stufenreproduktion mit Matrixdrucker 8340_6	201
Bild 7_5 Fotomasken gleichabständige Farbstufung 8340_20	202
Bild 7_6 Optischer Aufbau Rasterfilmerzeugung 8321_7	202
Bild 8_1 PostScript-Programmierung mit CIE-Farben 7330_3	207
Bild 8_2 PostScript-Ausgabe Rasterfeld 8321_8	208
Bild 8_3 PostScript-Programm Rasterfeld C8321_8	209
Bild 8_4 PostScript-Ausgabe Siemensstern 8260_5	210
Bild 8_5 PostScript-Programm Siemensstern C8260_5	210
Bild 8_6 Rastermodell von PostScript 8340_7, 8340_8	211
Bild 8_7 Rasterfrequenz und -winklung 8250_11, 8250_2, 8251_1	212
Bild 8_8 PostScript-Programm Schwarzheiten $N^* = 0,, 15$ C8250_1.	213
Bild 8_9 Graustufen und Rasterform 8250_12, 8250_3, 8250_4	214
Bild 8_10 Graustufen und Transferfunktionen 8250_3, 8250_7, 8260_1	215
Bild 8_11 Graustufen und Transferfunktionen 8251_1, 8251_5, 8260_2	216
Bild 8_12 Rasterzelle, -winklung YNMC 8341_1, 8341_2, 8341_3, 8341_4	219
Bild 8_13 Gelbraster, Stufen 0 bis 7 8350_1 bis 8350_8	221
Bild 8_14 Gelbraster, Stufen 8 bis 15 8351_1 bis 8351_8	222
Bild 8_15 Schwarzraster, Stufen 0 bis 7 8360_1 bis 8360_8	223
Bild 8_16 Schwarzraster, Stufen 8 bis 15 8361_1 bis 8361_8	224
Bild 8_17 Farbraster Magentarot <i>M</i> 8370_2 8371_1 8371_7	225

Bild 8_18 Farbraster Cyanblau C 8380_2 8381_1 8381_7...... 225 Bild 8 19 Füllung Rasterzelle, Stufe 13 8341 5, 8341 6, 8341 7, 8341 8.... 226 Bild 8_20 Füllung Rasterzelle, Stufe 1 8350_2, 8260_3, 8360_2, 8260_4...... 227 Bild 8_21 PostScript-Programm Rechteck-Grafikelemente C8260_6 229 Bild 8_23 PostScript-Programm Rechteck-Grafikelemente C8260_7 231 Bild 8_24 PostScript-Ausgabe Rechteck-Grafikelemente 8260_7...... 232 Bild 8_25 Farbstreifen von Grund- und Mischfarben 9481_8...... 233 Bild 8_26 Farbauszüge Farbstreifen 9481_4 bis 9481_7..... 234 Bild 8_27 PostScript-Programm Erzeugung Farbstreifen C7251_7...... 235 Bild 8_28 PostScript-Ausgabe Raster-Schwellendaten 7210_7, 7211_7... 236 Bild 8_29 PostScript-Programm Raster-Schwellendaten C7211_7...... 237 Bild 8_30 PC-Betriebssysteme und Display-PostScript 7110_1,7110_2... 238 Bild 8_31 Farbheiten, -werte CIEBasedABC-Farbraum 7110_3, 7110_4... 239 Bild 8_32 CIEBasedABC-Farbraum und Farbwiedergabe 7111_5, 7120_5240 Bild 8_33 Farbraum-Transformation ABC*-XYZ 7110_5, 7110_6, 7110_7. 241 Bild 8_34 Farbraum-Transformation *RGB**–*XYZ* 7111_1, 7111_2, 7111_3. 242 Bild 8 35 Farbraum-Transformation *L***a***b**–*XYZ* 7111 7, 7111 8...... 243 Bild 8_36 Farbraum-Transformation L*a*b*-XYZ 7120_1, 7120_3, 7120 4243 Bild 8_37 Globale Optimierung Farbwiedergabe 7120_7, 7121_2, 7121_4.. 244 Bild 8_38 Erzeugung von17 CIE-Testfarben 7221_7...... 246 Bild 8_39 PostScript-Programm: 17 CIE-Testfarben C7221_7...... 247 Bild 8_41 PostScript-Programm: L*-Helligkeiten C7231_7...... 249 Bild 8_43 PostScript-Programm: Bunte CIELAB-Farben C7241_7 251 Bild 8 44 Digitale Foto-CD-Datei im EPS-Format C7380 7 253 Bild 8_45 PSL2-EBU-Farbraum-Definition 7111_1, 7370_6...... 254 Bild 8_46 Foto-CD-Datei mit Farbraum-Transformation C7381_7 255 Bild 8_47 Bilddaten OLV* und Soll XYZ 7370_1,7370_2...... 257 Bild 8_48 Bilddaten OLV*, korrigiertes Soll XYZ 7371_2, 7370_3, 7370_4.. 258 Bild 8 49 Optimierte Farbraum-Transformationen 7370 7, 7370 8...... 259 Bild 8_50 Farbmaßzahlen der CIE-Testfarben 7390_3...... 260 Bild 10_1 Normspektralwerte 8310_1, 8321_1, 8321_2...... 273 Bild 10_2 Optimal-Grund- und Mischfarben in (x, y) 8331_80...... 277 Bild 10_3 Farbfernseh-Grundfarben, Farbarttafel (*a'*, *b'*) 8240_7 , 8240_8 278 Bild 10_4 Elementarfarben in Normfarbtafel (*x*, *y*) 8331_51 279 Bild 10_5 Farbfernseh-Grundfarben in Normfarbtafel (*x*, *y*) 8331_31 280 Bild 10_6 Normdruckfarben in Normfarbtafel (*x*, *y*) 8331_61 281 Bild 10_7 Reale Druckfarben in Normfarbtafel (*x*, *y*) 8331_70 282

Tabellen

Tabelle 2_1 Farbmischung, -werte und -heiten in Farbmetrik 7330_7 53
Tabelle 4_1 Farbschwellen-Formel LABJNDS 1985 7351_7 146
Tabelle 5_1 Grund- und Mischfarben Normfarbdruck-Prozeß 7311_3 156
Tabelle 5_2 Grund- und Mischfarben Farbfernsehen 7310_7 166
Tabelle 6_1 Farbnummern, Farbnamen im CEPT-Standard 7331_7 180
Tabelle 7_1 Grund- und Mischfarben von Farbmatrixdrucker 7321_3 198
Tabelle 7_2 Standardfarben mit Farbmatrixdrucker 7321_7 198
Tabelle 10_1 Normfarbwerte Optimalfarben 7340_3 274
Tabelle 10_2 Normspektralwerte 10 nm 7341_7 275
Tabelle 10_3 Normspektralwerte 20 nm 7350_7 276
Tabelle 10_4 Normfarbwerte Optimalfarben, Rechnung 20 nm 7310_3. 277
Tabelle 10_5 Normfarbwerte Elementarfarben 7320_7 279
Tabelle 10_6 Normfarbwerte Norm-Farbfernsehen 7310_71 280
Tabelle 10_7 Normfarbtafel Norm-Druckprozeß 7311_31 281
Tabelle 10_8 Normfarbwerte Test-Druckfarben 7311_7 282
Tabelle 10_9 Farbwerte der niederen Farbmetrik 7360_7 283
Tabelle 10_10 Farbheiten der höheren Farbmetrik 7361_7 284

Vorwort

Dieses Buch ist für jährliche Lehrveranstaltungen an der Technischen Universität Berlin am Institut für Lichttechnik und der Technischen Akademie Wuppertal entstanden. Für die Lehre im Bereich "Farbmetrik" (seit 1975) und Farbgrafik (seit 1988) wurden viele Farbbilder entwickelt, die das Lehrgebiet in besonderer Weise veranschaulichen.

Der Bereich Farbgrafik muß auf visuelle Eigenschaften zurückgreifen, die in der Lichttechnik und Farbmetrik beschrieben werden. Hier sind die Grundlagen der Farbmessung und die *geräteunabhängigen CIE-Farbsysteme* festgelegt. Die CIE-Farbsysteme werden in den Bereichen Farbgrafik und Farbreproduktion in immer stärkeren Maße eingesetzt. Für die Farbgrafik wurde eine Programmiersprache *PostScript* entwickelt, die genau mit diesen CIE-Farben arbeiten kann und damit *geräteunabhängig* ist. Etwa 300 PostScript-Geräte von 50 Herstellern sind zur Zeit auf dem Markt und interpretieren die CIE-Farbdefinitionen in der Regel im Gerät und setzen sie optimal in geräteeigene Grundfarben um.

An der Bundesanstalt für Materialforschung und -prüfung in Berlin wurden umfangreiche Forschungen zur visuellen Beurteilung und farbmetrische Kennzeichnung der Farbwiedergabe durchgeführt. Sie liefern eine hohe Korrelation zwischen visuellen Beurteilungen und farbmetrischen Kennzeichnungen. Daher können die meßtechnischen Farbwiedergabe-Kennzeichnungen zur Definition einer ISO-CIE-Güte der Ein- und Ausgabe-Farbgeräte (Farbkamera, -scanner, -monitor, -drucker, - kopierer, -faxgerät, -offsetdruckprozeß) benutzt werden.

Das vorliegende Buch verbindet fachübegreifend verschiedene Bereiche:

- visuelle Grundlagen und Eigenschaften des Farbensehens (Kapitel 1 und 4),
- Farbmeßtechnik, -erzeugung und -reproduktion (Kapitel 2, 5, 6 und 7),
- Farbbilder mit CIE-Farben und PostScript (Kapitel 8).

Die fachübergreifende Verbindung auf dem Forschungsgebiet Farbe wird benötigt von Wissenschaftlern, Technikern und Informatikern in der Farbbildtechnik, am Farbmonitor und in der Farbreproduktion.

Das *Munsell*-Farbsystem wurde von einem Maler entwickelt, und das *CIELAB*-System approximiert dieses Farbsystem. Mit PostScript steht jedes CIE-System zur Verfügung, und systematische Farbreihen und Kontraste sind möglich. Die Farben von Kunstwerken können gemessen, neu visualisiert und reproduziert werden. Hier entsteht eine neuartige Verbindung von Technik und Kunst.

Berlin, Sommer 1995

1 Farbgrafik

Die moderne Farbgrafik verbindet die Farbreproduktionsprozesse Farbfernsehen, Farbfotografie und Mehrfarbendruck mit Rechentechnik und optimiert sie auf der Grundlage visueller Eigenschaften des Farbensehens.

Bild 1_1Schema Verbindungen Farbgrafik

8280_1

Verbindungen des Bereichs "Farbgrafik" zu den Teilbereichen Farbfernsehen, Farbfotografie, Mehrfarbendruck und Rechentechnik

Bild 1_1 zeigt die Verbindungen der Farbgrafik mit den verschiedenen Bereichen.

Bild 1_2Schema Optimierung Farbwiedergabe 8280_3 Optimierung der Farbwiedergabe auf der Basis von CIE-Farbsystemen unter Berücksichtigung von visuellen und technischen Eigenschaften

Bild 1_2 zeigt die Voraussetzungen zur Erzeugung guter Farbwiedergabe im Bereich "Farbgrafik". Besondere Grundlagenkenntnisse über visuelle Farbsehund technische Eigenschaften der Farbreproduktion sind notwendig, um gute Farbwiedergabe zu erreichen. Auf der Grundlage von CIE-Farbmessungen mit CIE-Farbkoordinaten ist eine objektive Kennzeichnung der Farbwiedergabe möglich. Mit Hilfe dieser CIE-Farbmeßkoordinaten werden die heutigen technischen Ausgabegeräte in der PC-Umgebung gesteuert, z. B. Schwarzweiß- und Farblaserdrucker sowie Farbmonitore. Diese Möglichkeiten werden insbesondere in Kapitel 8 beschrieben. Die konventionellen Farbreproduktionsprozesse Farbfernsehen, Farbfotografie und Mehrfarbendruck werden zunehmend von der CIE-Farbmessung und der objektiven Kennzeichnung der Farbwiedergabe beeinflußt. Erst die objektive Kennzeichnung der Farbwiedergabe ermöglicht die Optimierung der Einzelparameter und erlaubt die Festlegung und die Einhaltung von *Toleranzen* in der Reproduktion.

1.1 BAM-Laboratorium: Farbwiedergabe

Hauptaufgaben und Ziele des BAM-Laboratoriums "Farbwiedergabe"*) sind die Prüfung der Farbwiedergabe, zum Beispiel von Filmmaterialien für die Stiftung Warentest und andere Antragsteller, sowie die Forschung und Entwicklung von Verfahren zur Kennzeichnung der Farbwiedergabe.

*) Im Zuge einer noch nicht abgeschlossenen Umorganisation der BAM trägt das bisherige Labor "Farbwiedergabe" ab 1. 5. 1995 den Namen "Visuelle Verfahren in der zerstörungsfreien Prüfung". Visuelle Grundlagenforschung, Farbwiedergabe und Bildwiedergabe-Kennzeichung sind weiterhin Schwerpunkte des Arbeitsbereichs dieses Labors. Im Rahmen der neuen Leitlinie der BAM "Sicherheit und Zuverlässigkeit" spielt die ISO-CIE-Farbbildwiedergabe-Kennzeichnung von Bildern aus Prüfergebnissen eine zunehmende Rolle, denn nur diese beschreibt objektiv die Sicherheit und Zuverlässigkeit für die Auswertung, Übertragung und Ausgabe von Bildern.

Bild 1_3Kennzeichnung und Beurteilung der Farbwiedergabe 8280_5 Aufgaben des BAM-Labors "Farbwiedergabe" – Qualitätskennzeichnung durch Prüfung, Forschung und Entwicklung auf dem Gebiet Farbe

Bild 1_3 faßt die Aufgaben des BAM-Labors "Farbwiedergabe" zur Qualitätskennzeichnung durch Prüfung, Forschung und Entwicklung auf dem Gebiet Farbe zusammen. Zur Prüfung der Farbwiedergabe von Farbfilmdiamaterial werden der BAM zum Beispiel von der Stiftung Warentest 30 verschiedene Farbfilmfabrikate mit der Bitte geliefert, die Qualität nach objektiven Kriterien zu kennzeichnen. Die Prüfungen führt die BAM nach DIN 6169 "Farbwiedergabe" durch. Für jeden einzelnen Test werden vor Beginn in sogenannten Fachbeiratssitzungen gemeinsam mit der Industrie die Prüfprogramme aufgestellt und diskutiert. Die Prüfungen in der BAM werden dann nach diesen Prüfprogrammen durchgeführt. Für andere Firmen oder private Antragsteller, die zum Beispiel ein Filmmaterial entwickeln oder in ihr Verkaufsprogramm aufnehmen wollen, prüft die BAM entsprechend den Normen oder Vereinbarungen und erstellt ein Prüfzeugnis oder Gutachten.

Das BAM-Labor "Farbwiedergabe" behandelt auch die Prozeßsimulation von Farbreproduktionen in den Bereichen Farbfernsehen, Farbfotografie, Mehrfarbendruck und Farbkopieverfahren sowie von Kombinationsprozessen, z. B. Farbfilm –> Farbdruck.

Neben der Prüfung der Farbwiedergabe für Teilprozesse, z. B. Farboriginal –> Farbfilm oder Farbfilm –> Farbdruck, simuliert die BAM zunehmend die gesamte Reproduktionskette und optimiert die Einzelparameter. Dies führt zur Erhöhung der Qualität der Produkte in bezug auf Farbwiedergabe bei gleichzeitiger Reduktion der Kosten.

Die Kennzeichnung der Farbwiedergabe ist nur mit möglichst genauen Kenntnisssen der Eigenschaften des menschlichen Farbensehens möglich und kann nur auf der Basis spektraler Messungen und Farbmessungen erfolgen. Der mittlere Farbabstand von Testfarben im Original und in der Wiedergabe ist ein Maß für die Güte der Farbwiedergabe. Die Verfahren zur Kennzeichnung der Farbwiedergabe sind in den Normen DIN 6169 Teil 1 bis 8 "Farbwiedergabe" festgelegt und basieren auf internationalen Empfehlungen.

Die wichtigsten Parameter bei der Simulation der Teilprozesse Farboriginal –> Farbfilm oder Farbfilm –> Farbdruck werden im folgenden kurz vorgestellt. Die farbfotografische Farbbilderzeugung von Testfarben ist abhängig von verschiedenen Parametern:

Einflußparameter auf die Farbwiedergabe- Qualität der Reproduktionskette:	(Test-)Farboriginal und Beleuchtung (spektrale Reflexion und Strahlung) Kamera, Aufnahmefilter, Belichtung (spektrale Strahlung, Normalbelichtung)
Farboriginal –> Farbfilmmaterial	Filmmaterial und Entwicklung (spektrale absolute Empfindlichkeit) Weiterbehandlung und Projektion (Rahmung, spektrale Strahlung)

Bild 1_4Farbwiedergabekette: Farboriginal -> Farbfilm 8281_1 Einflußparameter auf die Farbwiedergabe-Qualität in der Reproduktionskette: Farboriginal -> Farbfilmmaterial

Bild 1_4 zeigt Einflußparameter auf die Farbwiedergabe-Qualität in der Reproduktionskette: Farboriginal –> Farbfilmmaterial. Die Reproduktion von Farbfilmvorlagen im Mehrfarbendruck ist abhängig von verschiedenen Parametern:

Einflußparameter auf	Farbfilmvorlage und Beleuchtung
die Farbwiedergabe-	(spektrale Transmission und Strahlung)
Qualität der	Farb-Abtastsignal-Erzeugung
Reproduktionskette:	(spektrale absolute Empfindlichkeit)
Farbfilmmaterial –> Mehrfarbendruck	Farb-Abtastsignal-Verarbeitung (<i>Rechenprogramm Druckaufbereitung</i>) Mehrfarbendruck-Reproduktion (<i>Rasterung, Winkelung, Druckfarben</i>)

Bild 1_5 Farbwiedergabekette: Farbfilm -> Farbdruck 8281_3 Einflußparameter auf die Farbwiedergabe-Qualität in der Reproduktionskette: Farbfilmmaterial -> Mehrfarbendruck

Bild 1_5 zeigt Einflußparameter auf die Farbwiedergabe-Qualität in der Reproduktionskette: Farbfilmmaterial –> Mehrfarbendruck. Die Farbwiedergabe wird simuliert und optimiert für die Teilprozeßketten "Farboriginal –> Farbfilm" und "Farbfilm –> Farbdruck" sowie den Gesamtprozeß "Farboriginal –> Farbdruck".

In der Praxis wird die Farbwiedergabe durch Testaufnahmen und Probedrucke überprüft. Die Farbwiedergabe ist unter anderem von folgenden Parametern des Gesamtprozesses abhängig:

Bild 1_6Farbwiedergabekette: Original -> Film -> Druck 8281_5 Einflußparameter auf die Farbwiedergabe-Qualität in der Reproduktionskette: Farboriginal -> Farbfilm -> Farbdruck

Bild 1_6 zeigt Einflußparameter auf die Farbwiedergabe-Qualität in der Reproduktionskette: Farboriginal -> Farbfilm -> Farbdruck. Die Forderungen nach einer Optimierung des Gesamtprozesses Farboriginal -> Farbdruck können sich etwas von den Forderungen der Optimierung der Teilprozesse Farboriginal -> Farbfilm bzw. Farbfilm -> Farbdruck unterscheiden.

Wir werden in Kapitel 8 "Grundlagen zu PostScript" kennenlernen, daß heute in der Regel *alle Teilprozesse farbmetrisch optimiert* werden, um in heterogenen Systemungebungen mit Farbgeräten verschiedener Hersteller jeweils eine optimale Farbwiedergabe zu erreichen.

Am Beispiel eines Farbscanners (Farbdiamaterial-Abtaster) sollen drei verschiedene Verfahren zur Optimierung der Farbwiedergabe dargestellt werden. Ein idealer Farbscanner sollte möglichst spektrale Empfindlichkeiten haben, die an diejenigen des menschlichen visuellen Systems angepaßt sind. In der Regel wird eine Anpassung der Empfindlichkeiten an die Normspektralwertfunktion verlangt, die einen Normalbeobachter beschreiben.

Eine Anpassung an die Empfindlichkeiten "Normspektralwertfunktionen" wird insbesondere mit einem Farbmeßgerät nach dem Dreibereichsverfahren in guter Näherung mit Silizium-Fotoelementen und geeigneten Farbfiltern erreicht. In der Regel genügt es, wenn ein Farbmeßgerät einzelne großflächige Farben von mehr als 1 cm Durchmesser in etwa einer Sekunde messen kann.

Ein Farbdiamaterial-Scanner sollte pro Sekunde mehr als eine Million Farbflächen von 1/100 mm Durchmesser mit einer Auflösung von mindestens 12 bit (4096 Leuchtdichtestufen) messen. Hierzu werden drei lichtelektrische Empfänger (Multiplier) hoher Empfindlichkeit benutzt, deren *spektrale* Empfindlichkeit nur grob an die Sollempfindlichkeiten angepaßt werden kann. Drei Farbwertsignale *R*, *G* und *B* beschreiben an jedem Bildpunkt die Farbinformation:

Farbdiamaterial-Scanner:• drei lichtelektrische Empfänger• 0,01 mm Bildpunktdurchmesser• 4096 (12 bit) LeuchtdichtewerteMessung an jedem Farbbildpunkt:drei Farbwertsignale R, G und B	 Drei Verfahren zur Optimierung von farbmetrischem Gerätetreiber: Anpassung der spektralen Empfindlichkeiten an die drei Normspektralwertfunktionen
<i>Entwicklungsziel:</i>	 Optimierung einer 3 × 3- oder
farbmetrischer Gerätetreiber:	3 × 6-Gerätematrix zur Umrech-
Umwandlung von drei Farbwert-	nung von <i>RGB nach L*a*b*</i>
signalen <i>R</i> , <i>G und B</i> in Farbwerte	mit 17 CIE-Testfarben Berechnung der spektralen
<i>L*</i> , <i>a* und b*</i> (CIELAB-System)	Farbmaterial-Reflexion oder Trans-
<i>Probleme:</i>	mission an jeder Bildstelle, z. B.
sehr große Bildpunktanzahl:	mit drei Dichten von drei bekann-
etwa 3000 × 2000 Bildpunkte pro	ten Farbstoffen (Farbpigmenten),
Farbdia 36 mm × 24 mm,	nur möglich bei immer gleicharti-
oft Vorlagenflächen größer	gen Materialvorlagen (Diamaterial,
DIN-A2 bei Trommelscannern	Druckmaterial)

Bild 1_7Forderungen an Farbdiamaterial-Scanner

8191_3

Forderungen an farbmetrischen Farbdiamaterial-Scanner und drei Verfahren zur Optimierung des farbmetrischen Gerätetreibers mit Umwandlung der Farbwertsignale R, Gund B in Farbheiten Helligkeit L^* , Rot-Gün-Buntheit a^* und Gelb-Blau-Buntheit b^*

Bild 1_7 zeigt Forderungen an einen *farbmetrischen* Farbdiamaterial-Scanner und *drei* Verfahren zur Optimierung der Gerätetreiber mit Umwandlung der Farbwertsignale *R*, *G* und *B* in die CIE-Farbmaßzahlen Helligkeit L^* , Rot-Gün-Buntheit a^* und Gelb-Blau-Buntheit b^* im CIELAB-Farbsystem.

Die empfindungsgemäßen Farbmerkmale, z. B. Helligkeit, Buntheit, Schwarzheit usw., tragen oft die Endung "heit" oder "keit". Auch in der Digitaltechnik werden Daten benutzt, welche die Empfindungsstufung weitgehend berücksichtigen. Wir werden in diesem Buch alle an die Empfindungsstufung angepaßten Daten der Farbmetrik und der Digitaltechnik **Farbheiten** nennen und sie ebenfalls durch einen * kennzeichnen, wie zum Beispiel *L** im CIELAB-Farbsystem. Meßtechnische Daten, z. B. die Normfarbwerte *X*, *Y* und *Z ohne die* *-*Kennzeichnung*, sind dagegen linear mit der Strahlung und werden in diesem Buch wie üblich als **Farbwerte** bezeichnet.

2 Farbe und Farbsehen: Grundlagen

Die Beschreibung der Farbwiedergabe-Qualität ist nur mit genauen Kenntnissen der visuellen Eigenschaften des menschlichen Farbensehens möglich. Daher ist es besonders wichtig, diese Grundlagen durch visuelle Forschung zu erweitern. Mit Unterstützung der Deutschen Forschungsgemeinschaft sind in den letzten Jahren zwei BAM-Forschungsberichte (*Richter*, 1979, 1985) und zahlreiche Veröffentlichungen zu diesen Themen erschienen.

Wichtige Teilbereiche von *Farbe und Farbsehen* sind die empfindungsgemäße oder psychologische Ordnung von Farben und ihre dem visuellen System des Menschen angepaßte psychophysikalische Beschreibung.

In den folgenden Abschnitten werden diese Grundlagen des Bereichs "Farbe und Farbsehen" veranschaulicht. Im anschließenden Kapitel 3 werden dann besondere Eigenschaften des Farbensehens behandelt.

Bild 2_1 Teilbereiche von Farbe und Farbsehen8280_7Teilbereiche von Farbe und Farbsehen auf der visuellen Basis psychologische Ordnung

Bild 2_1 zeigt wichtige Teilbereiche von "Farbe und Farbsehen", die im folgenden durch viele Farbbilder beschrieben werden.

2.1 Farbenvielfalt

Alles, was wir sehen, hat eine Farbe. Farben bilden eine Vielfalt, die wir im folgenden nach verschiedenen visuellen Kriterien ordnen. Diese Ordnung führt uns zu Farben mit gleichen Farbmerkmalen.

Bild 2_2Farbenvielfalt8510_1Farbenvielfalt, ungeordnet, die in dieGruppen unbunte und bunte Farbengeordnet werden können

Bild 2_2 zeigt eine ungeordnete Vielfalt von Farben.

Bild 2_3Unbunte Farben 8510_2 Farbenvielfalt, ungeordnet; die Gruppe unbunte Farben Weiß – Grau – Schwarz ist hervorgehoben

In **Bild 2_3** ist aus der ungeordneten Farbenvielfalt die Gruppe der unbunten Farben hervorgehoben.

In **Bild 2_4** ist aus der ungeordneten Farbenvielfalt die Gruppe der bunten Farben hervorgehoben.

Zur Kennzeichnung der Farben wird heute in der Bildverarbeitung die Digitaltechnik eingesetzt. Als ein Minimum für die digitale Bildverarbeitung gelten 4096 Farben, die sich aus je 16 Farbstufen der drei additiven Grundfarben R (rote Farbe), G (grüne Farbe) und B (blaue Farbe) ergeben. Diese drei Grundfarben werden in der Regel hexadezimal codiert, das heißt, den 16 Stufen mit den Dezimalzahlen 0 bis 15 entsprechen die Kennzeichnungen 0 bis 9 und A bis F für 10 bis 15.

Bild 2_5 zeigt die den verschiedenen Farben zugeordneten Kennzeichnungen im hexadezimalen System. Die drei Kennzeichnungen stehen nacheinander für die *RGB*-Farbdaten, die entsprechend ihrem visuellen Aussehen im folgenden mit O (für Orangerot), L (für Laubgrün) und V (für Violettblau) gekennzeichnet werden. Die Bezeichnungen O, L und V sind notwendig, weil die Buchstaben R, G und B im folgenden für die zu definierenden Elementarfarben Rot R, Grün G und Blau B notwendig sind und diese visuell wesentlich von O, L und V abweichen.

Für Stufungen, die eine empfindungsgemäße *Gleichabständigkeit* anstreben, z. B. eine gleichabständige 16stufige Graureihe, wird das Zeichen * für die Farbkoordinate benutzt. So wird z. B. die Bezeichnung L^* für die Helligkeit $(L^* = \text{engl. lightness})$ verwendet. Entsprechend kennzeichnen wir hier *OLV* mit dem Zeichen *, falls wir anstreben, daß die Kennzeichnungen *OLV** = 000, 111, 222, ..., EEE, FFF eine visuell gleichabständige Graureihe ergeben sollen.

Aus Bild 2_5 ist zu ersehen, daß die unbunten Farben drei gleiche Kennzeichnungen erhalten. Bei bunten Farben sind sie entsprechend verschieden.

2.2 Farbkörper

Leonardo da Vinci (gest. 1519) führte die Gesamtheit der Farben auf sechs "einfache" Farben zurück; ein unbuntes Paar (Weiß – Schwarz) und zwei bunte Paare (Rot – Grün und Gelb – Blau). Der Doppelkegel in Bild 2_6 veranschaulicht rein modellmäßig seinen Gedanken. Die senkrechte Achse entspricht den unbunten Farben, die größte Umgrenzung den reinen bunten Farben.

Bild 2_6Farbdoppelkegel 8520_1 Doppelkegel zur Veranschaulichung der dreidimensionalen Farbordnung in unbunte und bunte Farben auf mittelgrauer Umgebung

Das **Bild 2_6** zeigt die sechs "einfachen" Farben (oder Elementarfarben, wie wir sie nennen werden). Es bedeuten in Bild 2_6:

W	Weiß	J	Gelb (= jaune)	R	Rot
Ν	Schwarz (= noir)	В	Blau	G	Grün

Bild 2_7*RG***-Bunttonschnitt** 8520_2 Vertikaler Schnitt durch den Farbdoppelkegel in der Bunttonebene Rot – Grün auf mittelgrauer Umgebung

Bild 2_7 zeigt den Farbdoppelkegel mit vielen Zwischenstufen in der Ebene Rot – Grün durch die Unbuntachse Weiß – Schwarz.

Bild 2_8*JB***-Bunttonschnitt** 8520_3 Vertikaler Schnitt durch den Farbdoppelkegel in der Bunttonebene Gelb – Blau auf mittelgrauer Umgebung

Bild 2_8 zeigt den Farbdoppelkegel mit vielen Zwischenstufen in der Ebene Gelb – Blau durch die Unbuntachse Weiß – Schwarz.

2.3 Elementarfarben

In jedem Bunttonkreis gibt es die vier empfindungsgemäß ausgezeichneten bunten Farben. Wir nennen sie Elementarfarben, und wir unterscheiden Elementar-Gelb, -Rot, -Blau und -Grün.

Rasches Eingabeln erlaubt leicht, z. B. Elementargelb als "Weder-Noch"-Farbe (weder rötlich noch grünlich) gegenüber den rötlich-gelben und grünlichgelben "Sowohl-Als-Auch"-Farben in einem Bunttonkreis zu ermitteln.

Bild 2_9 Elementarfarbe *J* 8520_5 Kriterium zur Ermittlung der Elementarfarbe Gelb *J* aus einem Farbkreis im Bereich Gelb

Bild 2_9 beschreibt die Kriterien zur Ermittlung der Elementarfarbe Gelb J (= frz. jaune) aus einem Farbkreis im Bereich Gelb.

Bild 2_10 Elementarfarbe *B* 8520_6 Kriterium zur Ermittlung der Elementarfarbe Blau *B* aus einem Farbkreis im Bereich Blau

Bild 2_10 beschreibt die Kriterien zur Ermittlung der Elementarfarbe Blau *B* aus einem Farbkreis im Bereich Blau.

Bild 2_11 Elementarfarbe *G* 8520_7 Kriterium zur Ermittlung der Elementarfarbe Grün *G* aus einem Farbkreis im Bereich Grün

Bild 2_11 beschreibt die Kriterien zur Ermittlung der Elementarfarbe Grün G aus einem Farbkreis im Bereich Grün.

Bild 2_12 Elementarfarbe *R* 8520_8 Kriterium zur Ermittlung der Elementarfarbe Rot *R* aus einem Farbkreis im Bereich Rot

Bild 2_12 beschreibt die Kriterien zur Ermittlung der Elementarfarbe Rot *R* aus einem Farbkreis im Bereich Rot.

2.4 Symmetrischer Bunttonkreis

Beidseitig der zwei Elementarfarbachsen R-G und J-B werden die Farben zunehmend gelber oder blauer bzw. röter oder grüner, wenn sie sich vom unbunten Zentrum entfernen.

Bild 2_13Symmetrischer Bunttonkreis achtteilig 8670_3 Symmetrischer Bunttonkreis mit den Elementarfarben *J*, *R*, *B* und *G* sowie den Mittelfarben *J*50*R*, *R*50*B*, *B*50*G* und *G*50*J*

Bild 2_13 zeigt den symmetrischen Bunttonkreis mit den gegenüberliegenden Elementarfarben Rot – Grün und Gelb – Blau sowie den Mittelfarben.

Bild 2_14Symmetrischer Bunttonkreis sechzehnteilig 8670_4 Symmetrischer Bunttonkreis mit Benennung der Mittelfarben und weiterer Zwischenfarben

Man legt in der Farbmetrik meist 100 Stufen zwischen Schwarz und Weiß. Legt man ebenso 100 Bunttonstufen zwischen zwei Elementarfarben, so entsteht die in **Bild 2_14** angegebene Bezeichnung für die Zwischenstufen, die teilweise auch schon im vorherigen Bild 2_13 angegeben ist.

2.5 Farben mit maximaler Buntheit

In jeder Konzentrationsreihe eines Farbstoffs, die von weißlichen Farben über bunte Farben zu schwärzlichen Farben führt, gibt es eine empfindungsgemäß ausgezeichnete Farbe maximaler Buntheit.

Rasches Eingabeln gestattet, z. B. das "bunteste" Rot aus einer von Weiß, Weißlichrot über Rot, Schwärzlichrot nach Schwarz führenden Farbreihe gemäß den Kriterien unbunter oder bunter bzw. weißer oder schwärzer zu bestimmen.

Bild 2_15 Maximale Buntheit8521_1Kriterien zur Ermittlung der Farbemaximalermaler Buntheit aus einer FarbreiheWeiβ – Rot – Schwarz

In **Bild 2_15** kann man leicht die "bunteste" Farbe ermitteln. Die Kriterien zur Bestimmung der Farbe maximaler Buntheit aus einer Konzentrationsreihe eines Farbstoffs sind im Bild 2_15 angegeben und lauten:

R	Rot	W	Weiß	Ν	Schwarz (= noir)
С	bunter (= chromatic)	W	weißer	n	schwärzer
C^*	Buntheit	L^*	Helligkeit		

2.6 Farbmerkmale Buntheit und Helligkeit

Drei Farbmerkmale kennzeichnen eine Farbe. Die meisten Farbsysteme wählen den Buntton als erstes Merkmal aus und unterscheiden sich in der Wahl der beiden anderen Farbmerkmale. Ein Vergleich der Farbsysteme erfordert ein gleichartiges Koordinatensystem. In der Farbmetrik trägt man gewöhnlich auf der Abzisse die Buntheit C^* und auf der Ordinate die Helligkeit L^* ab.

Bild 2_16 zeigt bunttongleiche Farben von gleicher Buntheit $C^* = 25$. Die Zahl 25 ergibt sich im Bild 2_16, wenn für Rot *R*, wie in der Farbmetrik üblich, genau 100 Stufen gewählt werden und damit die Buntheit von Rot *R* mit $C^* = 100$ gekennzeichnet wird.

Bild 2_17 Konstante Helligkeit 8521_3 Farben von gleicher Helligkeit L^* und von konstantem Buntton liegen auf waagrechten Reihen, die senkrecht zur Unbuntachse angeordnet sind

Bild 2_17 zeigt bunttongleiche Farben von gleicher Helligkeit $L^* = 50$. Die Zahl 50 ergibt sich im Bild 2_17, wenn für Weiß *W*, wie in der Farbmetrik üblich, 100 Stufen gewählt werden und damit die Helligkeit von Weiß *W* mit $L^* = 100$ gekennzeichnet wird.

Bunttongleiche Farbreihen konstanter Buntheit und konstanter Helligkeit wurden zuerst im amerikanischen *Munsell*-Farbsystem als Farbmuster für 40 verschiedene Bunttöne repräsentiert. Der heute in der Farbmetrik am meisten verbreitete Farbenraum CIELAB 1976 definiert ebenfalls die Koordinaten Buntheit C^* und Helligkeit L^* .

Im Farbsystem *RAL-Design* sind Farbmuster mit den Buntheits- und Helligkeitssabständen von jeweils zehn CIELAB-Einheiten ausgefärbt. Je nach Ausfärbungstechnik und entsprechend der Anzahl der verwendeten Basispigmente unterscheiden sich die Farbkörpergrenzen bzw. der Farbumfang. Für glänzende Farbmuster ist in der Regel ein größerer Farbumfang als für matte Muster möglich, d. h., es können mehr Gitterpunkte (C^* , L^*) in glänzender Technik ausgefärbt werden.

2.7 Farbmerkmale Schwarzheit (Brillantheit) und Weißheit

Es gibt mehr als die drei Farbmerkmale Buntton, Buntheit und Helligkeit. Die weiteren Farbmerkmale Schwarzheit (Brillantheit) und Weißheit lassen sich aus den ersten drei ableiten. Die Farbmerkmale Schwarzheit und Brillantheit beschreiben die gleiche Eigenschaft, ändern jedoch die Zahlenwerte, wie z. B. bei Helligkeit und Dunkelheit, in entgegengesetzte Richtungen. Die Schwarzheit wird als eines der wichtigen Farbmerkmale im Schwedischen Natural Color System (NCS) gewählt. Hier sind die Farbmerkmale Buntton, Schwarzheit und Buntheit die ausgewählten Merkmale, auf die Helligkeit als primäres Farbmerkmal wird verzichtet.

Bild 2_18 Konstante Schwarz- und Weißheit 8521_5, 8521_6 Farben von gleicher Schwarzheit N^* (links) der Schwarzheit $N^* = 25$ und gleicher Weißheit W^* (rechts) der Weißheit $W^* = 25$

Bild 2_18 zeigt Farben von gleicher Schwarzheit N^* (links) mit der Schwarzheit $N^* = 25$ und gleicher Weißheit W^* (rechts) mit der Weißheit $W^* = 25$. Anstelle der Schwarzheit N^* kann die Bezeichnung Brillantheit I^* gewählt werden.

Bild 2_19 Schwarz-, Weiß-, Brillant- oder Leuchtheit $8580_2, 8580_4$ Zusammenhang der Farbmerkmale Schwarzheit N^* und Weißheit W^* mit den Farbmerkmalen Helligkeit L^* und Buntheit C^*

Bild 2_19 zeigt *links* den Zusammenhang der Farbmerkmale Schwarzheit N^* und Weißheit W^* mit den Farbmerkmalen Helligkeit L^* und Buntheit C^* . Das Farbmerkmal Schwarzheit N^* im *linken* Bild ist durch das Farbmerkmal Brillantheit im *rechten* Bild ersetzt. Die Brillantheit I^* zählt entgegengesetzt zur Schwarzheit N^* . Brillantheit I^* und Weißheit W^* ergeben sich aus der Helligkeit L^* durch Addition bzw. Subtraktion der halben Buntheit C^* , vgl. Bild 2_19 *rechts*.

2.8 Farbspektrum und Elementarfarben

2.8.1 Hellvalenz und Helligkeit

Das z. B. mit Hilfe eines Prismas gewonnene Tageslichtspektrum, das von *Newton* (gest. 1727) eingehend untersucht wurde, umfaßt die Strahlung vom kurzwelligen Rötlichblau (Violett, angenähert *R*60*B*) bis zum langwelligen Gelblichrot (angenähert *J*90*R*). Farbige Lichter unterscheiden sich durch ihre *spektrale Strahlungsverteilung*. Die schließlich ins Auge fallende spektrale Verteilung der Lichtstrahlen wird vorher durch farbig aussehende Körper, z. B. eingefärbt mit Farbstoffen der chemischen Industrie, verändert.

Bild 2_20 zeigt schematisch den Strahlungsbereich aller Wellenlängen des sichtbaren Spektrums zwischen etwa $\lambda = 380$ nm und $\lambda = 720$ nm (1 nm = 10^{-9} m). Die Strahlungen jenseits der Grenzen des sichtbaren Spektral-Bereichs heißen *Ultraviolett UV* und *Infrarot IR*. Bild 2_20 zeigt ein Spektrum, das man auch mit einem Interferenzverlauffilter in der Diaebene eines Projektors herstellen kann. Das Interferenzverlauffilter läßt über die Diabreite Strahlungen von etwa 380 nm bis 720 nm durch.

Entsprechend **Bild 2_21** ist das Spektrum von der hellen gelbgrünen Mitte nach beiden Seiten hin immer dunkler. Diese Eigenschaft ist eine Folge der spektralen Hellempfindlichkeit $\bar{y}(\lambda)$ des Auges, die bei 555 nm ein Maximum aufweist und in der Nähe von 400 nm und 700 nm auf weniger als 1% ihres Maximalwerts absinkt. Die spektrale Hellempfindlichkeit $\bar{y}(\lambda)$ kennzeichnet die *Valenz* (Wertigkeit) der Spektralfarben, z. B. der Bandbreite 10 nm und gleicher Strahlungsenergie, *in der Farbmischung*. Der Zahlenwert, der durch die spektrale Hellempfindlichkeit $\bar{y}(\lambda)$ beschrieben wird, kann *Hellwert* oder *Hellvalenz* genannt werden.

Hiervon verschieden ist der Zahlenwert, der die Helligkeitserscheinung von Spektralfarben gleicher Strahlungsenergie beschreibt, die von der spektralen Mitte des Spektrums *nichtlinear* abfällt.

Die Helligkeitserscheinung wird durch eine kubische Transformation der Hellempfindlichkeit $\bar{y}(\lambda)$ angenähert beschrieben, die entsprechend **Bild 2_22** weit weniger von der spektralen Mitte um 555 nm nach 400 nm und 700 nm abfällt, als dies Bild 2_21, das die *Valenz in der Farbmischung* darstellt, vermuten läßt.

2.8.2 Buntvalenz und Buntheit

Neben der Bewertung des Spektrums durch "Hellwerte" in der Farbmischung wird das Spektrum auch durch "Buntwerte" beschrieben. Das sichtbare Spektrum enthält eine kontinuierliche Folge von Bunttönen, und man kann im Spektrum drei spektrale Elementarfarben ermitteln. Die spektralen Elementarfarben liegen in der Nähe von 475 nm für Elementarblau, 503 nm für Elementargrün und 574 nm für Elementargelb.

Elementarrot liegt außerhalb des Spektrums und kann z. B. durch anteilige Mischung der Spektralfarben $\lambda = 400$ nm und 700 nm erzeugt werden. Die so erhaltenen Purpurfarben kennzeichnet man durch eine zur Lichtart *E* (gleiche

Strahlungsenergie) kompensative Wellenlänge. Es ergibt sich für Elementarrot die bunttongleiche Wellenlänge $\lambda_c = 494$ nm.

An den spektralen Elementarfarben ändern die Rot–Grün- oder Gelb–Blau-Buntwerte ihr Vorzeichen von negativ zu positiv oder umgekehrt.

Bild 2_23RG-Buntwerte 8530_5 Spektrale Rot–Grün-Buntwerte $A = \overline{a}(\lambda)$ des Gegenfarbensystems für Spektral-farben zwischen 380 nm und 720 nm

Bild 2_23 zeigt die Rot–Grün-Buntwerte, das sind die Rot–Grün-Valenzen in der Farbmischung, als Funktion der Wellenlänge. Die Schnittpunkte bei 475 nm und 574 nm kennzeichnen die spektralen Elementarfarben Blau und Gelb.

Bild 2_24*JB***-Buntwerte** 8530_6 Spektrale Gelb–Blau-Buntwerte $B = \overline{b}(\lambda)$ des Gegenfarbensystems für Spektralfarben zwischen 380 nm und 720 nm

Bild 2_24 zeigt die Gelb–Blau-Buntwerte, das sind die Gelb–Blau-Valenzen in der Farbmischung, als Funktion der Wellenlänge. Der Schnittpunkt bei 503 nm kennzeichnet die spektrale Elementarfarbe Grün.

Die Hellwerte sowie Rot–Grün- und Gelb–Blau-Buntwerte bilden für die Spektralfarben gleicher Strahlungsenergie drei Zahlenwerte für jede Wellenlänge λ , z. B. der Bandbreite 10 nm zwischen 380 nm und 720 nm, die im dreidimensionalen Raum mit den Koordinaten Rot–Grün-Buntwert *A*, Gelb–Blau-Buntwert *B* und Hellwert oder Hellbezugswert *Y* einen Punkt im Raum beschreiben. Die Punkte aller Spektralfarben liegen auf einer dreidimensionalen Kurve, die im **Bild 2_25** angegeben ist.

Bild 2_25 Räumliche Farbwerte 8530_3 Spektrale Farbvektoren im dreidimensionalen Farbenraum mit Koordinaten Rot-Grün-Buntwert $A = \overline{a}(\lambda)$, Gelb-Blau-Buntwert $B = \overline{b}(\lambda)$ und Hellbezugswert $Y = \overline{y}(\lambda)$

Die Projektion der dreiddimensionalen Kurve in die Ebene (A, B) ist in Bild 2_25 durch eine weiße Kurve dargestellt. Die dreidimensionale Kurve schneidet bei 475 nm (Elementarblau) und 574 nm (Elementargelb) die Ebene (B, Y) sowie bei 503 nm (Elementargrün) und der kompensativen Wellenlänge 494 nm (Elementarrot) die Ebene (A, Y).

Betrachtet man die Buntheits-Erscheinung im Spektrum, so besteht auch hier wieder wie zwischen Hellwert und Helligkeit ein Unterschied, der durch Buntwert (Valenz in der Farbmischung) und Buntheit (Bewertung der Buntheits-Erscheinung von Spektralfarben gleicher Strahlungsenergie) gekennzeichnet wird.

Bild 2_26 zeigt die Rot–Grün-Buntheiten, das heißt die Buntheits-Erscheinung für Farben gleicher Strahlungsenergie als Funktion der Wellenlänge.

Bild 2_27 zeigt die Gelb–Blau-Buntheiten, das heißt die Gelb–Blau-Erscheinung für Farben gleicher Strahlungsenergie als Funktion der Wellenlänge.

Die Helligkeit sowie die Rot–Grün- und Gelb–Blau-Buntheit bilden für die Spektralfarben gleicher Strahlungsenergie drei Zahlenwerte für jede Wellenlänge λ , z. B. der Bandbreite 10 nm zwischen 380 nm und 720 nm, die im dreidimensionalen Raum mit den Koordinaten Rot–Grün-Buntheit $A^* = \bar{a}^*(\lambda)$, Gelb–Blau-Buntheit $B^* = \bar{b}^*(\lambda)$ und Helligkeit $L^* = [\bar{y}(\lambda)]^{1/3}$ einen Punkt im Raum beschreiben. Die Punkte aller Spektralfarben liegen auf einer dreidimensionalen Kurve, die im **Bild 2_28** angegeben ist.

Die Projektion der dreidimensionalen Kurve in die Ebene (A^*, B^*) ist in Bild 2_28 durch eine weiße Kurve dargestellt. Die dreidimensionale Kurve schneidet bei 475 nm (Elementarblau) und 574 nm (Elementargelb) die Ebene (B^*, L^*) sowie bei 503 nm (Elementargrün) und der kompensativen Wellenlänge 494 nm (Elementarrot) die Ebene (A^*, L^*) .

2.9 Spektrales Farbmischgerät und Reflexionsfaktoren

Mit einem Spektrometer, vgl. Bild 3_18, Seite 81, kann man an jeder Wellenlänge die spektrale Reflexion der auffallenden Strahlung messen. Durch Vergleich mit der Reflexion des idealen Weiß erhält man für alle (nichtfluoreszierenden) Körperfarben eine Reflexionskurve mit numerischen Werten der spektralen Reflexionsfaktoren kleiner als 1,0.

Bild 2_29 Spektraler Reflexionsfaktor Elementarfarben 8531_1 bis 8531_4 Mischung verschiedener Spektralfarben unterschiedlicher Strahlung zu einer einheitlichen Farbe mit einem spektralen Farbmischgerät. Farben:Bit G(ben links)Gelb J(oben links)Rot R(oben rechts),Blau B(unten links)Grün G(unten rechts)

Die in **Bild 2_29** gezeigten spektralen Reflexionsfaktoren kann man auf "Masken" mit entsprechenden Transmissionsfaktoren übertragen und in einem spektralen Farbmischgerät benutzen.

Bild 2_30 Prinzip SpektralesFarbmischgerät8321_6Prinzip des spektralen Farbmischgeräts.Von einer weißen Lichtquelle gehen zweiStrahlengänge aus. Der eine wird optischin Spektralfarben zerlegt. Masken am Ortdes Spektrums erlauben die Erzeugung vonWeiß (keine Absorption) oder von beliebi-gen Farben.

Bild 2_30 zeigt das Prinzip eines spektralen Farbmischgeräts, das die Erzeugung von Farben bis hin zu den Optimalfarben mit rechteckförmigen Reflexionskurven erlaubt. Die Lichtquelle des spektralen Farbmischgeräts erzeugt einerseits auf einem weißen Projektionsschirm ein weißes, kreisringförmiges Umfeld, andererseits wird das Licht durch ein Prisma in ein Spektrum zerlegt, und alle Spektralfarben werden wieder optisch gemischt und bilden ein gleiches Weiß im kreisförmigen Infeld wie im kreisringförmigen Umfeld.

Durch Masken am Ort des Spektrums wird je nach Transmissionsfaktor $\tau(\lambda)$ die Farbe im weißen Infeld verändert. Eine Maske mit dem *Transmissionsfaktor* $\tau(\lambda)$ *zur Erzeugung des Infelds* und eine Oberflächenfarbe mit dem *Reflexionsfaktor* $R(\lambda)$ *im Umfeld* am Ort des Schirms, vgl. Bild 2_30, ergeben gleichaussehende Farben. Bei Übereinstimmung von $\tau(\lambda)$ der Maske und $R(\lambda)$ der Oberflächenfarbe entstehen am Ort des Schirms an allen Punkten gleiche physikalische Farbreize $S(\lambda)\cdot\tau(\lambda)$ bzw. $S(\lambda)\cdot R(\lambda)$, mit $S(\lambda)$ = Lampen-Lichtstrahlung.

Bild 2_31 zeigt Reflexionsfaktoren $R(\lambda)$ von vier CIE-Testfarben Nr. 9 (Rot), Nr. 10 (Gelb), Nr. 11 (Grün) und Nr. 12 (Blau). Sie werden nach DIN 6169 "Farbwiedergabe" zur Kennzeichnung der Farbwiedergabe in technischen Reproduktionsprozessen verwendet. Zusätzlich ist ein konstanter Reflexionsfaktor $R(\lambda) = 0,6$ eingetragen, der einer hellgrauen Farbe entspricht.

2.10 Fluoreszenz

Fluoreszenz verwandelt kurzwellige in längerwellige Lichtstrahlung. Dies ermöglicht den bekannten Effekt optischer Aufheller, durch die Wäsche und Papier weißer erscheinen oder die Leuchtfarben entstehen lassen. Die Leuchtfarben oder fluoreszierenden Farben bedingen eine wesentliche Ausdehnung des durch normale (nichtfluoreszierende) Farben ausfärbbaren Farbenraums und werden in vielen Bereichen eingesetzt.

Bild 2_32 zeigt die Reflexion und Emission einer fluoreszierenden Farbe. Fluoreszierende Farben reflektieren mehr langwelliges (rot erscheinendes) Licht, als im auffallenden Tageslicht vorhanden ist. Die Summe aus spektraler Emission und Reflexion wird nach Bild 2_32 für die rote Leuchtfarbe im langwelligen Spektralbereich teilweise größer als 1,0. Diese Körperfarbe erscheint besonders leuchtend rot. Deshalb bezeichnen wir sie als Leuchtfarbe.

Die Änderung der Farberscheinung des Spektrums kann man an verschiedenen Farbflächen demonstrieren, indem man ein Spektrum mit einem Interferenzverlauffilter erzeugt und dieses auf verschiedene Farbflächen projiziert:

- Bei Projektion des Spektrums auf eine weiße Fläche (I) erscheint das Spektrum in der gewohnten Farbfolge Violett *b*, Blau *B*, Grün *G*, Gelb *J* bis Rot *r*.
- Bei Projektion des Spektrums auf eine normale rote Farbe (II) wird die Lichtstrahlung in den Bereichen von Violett *b* bis Gelb *J* vorwiegend absorbiert.
- Bei Projektion des Spektrums auf eine fluoreszierende rote Farbe (III) wird auch in den Spektralbereichen von Violett *b* bis Gelb *J* Licht mit der Farbe Rot emittiert.

Bild 2_33Spektrale Erscheinung Fluoreszenz 8540_1 Erscheinung der Fluoreszenz; Spektrum auf einer weißen (I) und zwei roten Proben: *nicht* fluoreszierend (II) und fluoreszierend (III)

Bild 2_33 zeigt die Erscheinung der Fluoreszenz. Das Spektrum erscheint auf einer weißen (I) und zwei roten Proben: *nicht* fluoreszierend (II) und fluoreszierend (III) sehr unterschiedlich.

Bild 2_34Schema Fluoreszenz 8540_2 Erscheinung der Fluoreszenz; Farben *N*, *v* (violett), *B*, *G*, *J* und *r* (rötlich) auf einer weißen (I) und zwei roten Proben: diffus (II) und fluoreszierend (III)

Bild 2_34 zeigt die Erscheinung der Fluoreszenz schematisch mit Farbbuchstaben. Die Farbbuchstaben N, v (violett), B, G, J und r (rötlich) auf einer weißen (I) und zwei roten Proben: diffus (II) und fluoreszierend (III) beschreiben die verschiedenen Farberscheinungen für den Wellenlängenbereich 380 nm bis 720 nm.

- Ein Spektrum eines Projektors, welches hier durch ein Interferenz-Verlauffilter erzeugt wird, erscheint auf einer weißen Oberfläche (I) in der gewohnten Farbfolge Violett v, Blau B, Grün G, Gelb J und Rot r mit kontinuierlichen Übergängen.
- Das gleiche Spektrum erscheint auf einer (normalen) roten Oberfläche einer Körperfarbe (II) in den Bereichen von Violett bis Gelb nahezu Schwarz, da jede rote Farbfläche diese Spektralfarben fast vollständig absorbiert. Nur im langwelligen Spektralbereich werden alle rot erscheinenden Spektralfarben reflektiert.

• Das gleiche Spektrum erscheint auf einer roten Oberfläche einer Leuchtfarbe (III) im ganzen Spektralbereich Rot. Die rote Leuchtfarbe absorbiert z. B. das kurzwellige Licht, wandelt es in längerwelliges Licht um und emittiert ein rot erscheinendes Licht.

2.11 Retroreflexion

Retroreflektierende Materialien erscheinen als besonders leuchtende Farben unter speziellen Beleuchtungs- und Beobachtungsbedingungen. Die Farbe wird hierbei durch die beleuchtende Lichtart und durch eine unbunte (weiß erscheinende) Materialoberfläche mit besonderen geometrischen Reflexionseigenschaften und einer darüberliegenden durchsichtigen Farbschicht erzeugt. Diese Farbschicht kann man sich als ein Farbfilter vorstellen, das je nach Färbung unterschiedliche spektrale Transmission besitzt.

Die Änderung der Farberscheinung des Spektrums auf retroreflektierenden Oberflächen kann man demonstrieren, indem man ein Spektrum mit einem Interferenz-Verlauffilter erzeugt und dieses auf verschiedene Farbflächen projiziert und die Beleuchtungs- und Beobachtungsrichtung ändert.

- Bei Projektion des Spektrums auf eine weiße Fläche (I) erscheint das Spektrum in der gewohnten Farbfolge Violett *v*, Blau *B*, Grün *G*, Gelb *J* bis Rot *r*.
- Bei Projektion des Spektrums auf rotes Material (II und III in Bild 2_35) wird das auffallende (gerichtete) Licht bevorzugt in Richtung des einfallenden Lichts reflektiert, vgl. auch Bild 3_15, Seite 77. Die Farbe erscheint besonders leuchtend rot für diejenigen Beobachter, die sich in dieser Richtung befinden (III). Die Strahlung, die bei normalen Oberflächenfarben in *alle* Raumrichtungen diffus reflektiert wird, vgl. auch Bild 3_12, Seite 76, wird hier bevorzugt in Richtung der Lichtquelle reflektiert. Die Helligkeit des Materials und damit ihre Buntheit nimmt bei Änderung der Beobachtungsrichtung nach jeder Seite der Verbindungslinie zwischen Lichtquelle und Farbfläche ab.

Bild 2_35 Spektrale Erscheinung
Retroreflexion 8540_3 Retroreflexion
erscheinung der Retroreflexion; Erscheinung des Spektrums auf einer weißen (I)
und einer roten retroreflektierenden Probe
unter den Geometrien $0^{\circ}/45^{\circ}$ (II) und
 $45^{\circ}/45^{\circ}$ (III)

Bild 2_35 zeigt die Erscheinung der Retroreflexion. In den drei Fällen (I bis III) werden die Proben unter 45° beobachtet. Im Fall II wird die Probe unter 0° und im Fall III unter 45° bestrahlt. Die Reflexion erreicht bei Übereinstimmung der Bestrahlungs- und Beobachtungsrichtung ein Maximum (Fall III).

Bild 2_36Schema Retroreflexion 8540_4 Erscheinung der Retroreflexion; Farben *N*, *v* (violett), *B*, *G*, *J* und *r* (rötlich) auf einer weißen (I) sowie einer roten retroreflektierenden Probe unter den Geometrien $0^{\circ}/45^{\circ}$ (II) und $45^{\circ}/45^{\circ}$ (III)

Bild 2_36 zeigt die Erscheinung der Retroreflexion. Die Farbbuchstaben *N*, *v* (violett), *B*, *G*, *J* und *r* (rötlich) auf einer weißen (I) und einer retroreflektierenden roten Probe der Geometrie $0^{\circ}/45^{\circ}$ (II) und $45^{\circ}/45^{\circ}$ (III) beschreiben die verschiedenen Farberscheinungen für den Wellenlängenbereich 380 nm bis 720 nm.

- Das Spektrum eines Projektors, welches hier durch ein Interferenz-Verlauffilter erzeugt wird, erscheint auf einer weißen Oberfläche in der gewohnten Farbfolge Violett v, Blau B, Grün G, Gelb J und Rot r mit kontinuierlichen Übergängen.
- Das gleiche Spektrum erscheint auf einer roten retroreflektierenden Probe unter den Geometrien $0^{\circ}/45^{\circ}$ (II) und $45^{\circ}/45^{\circ}$ (III) unterschiedlich hell im Rotbereich.

• Im Vergleich zur Probe II erscheint die Probe III wesentlich heller (hier gekennzeichnet durch ein größeres *r* im Vergleich zu Fall II).

2.12 Normfarbwerte und Normfarbtafel

Die eine Farbe kennzeichnenden Maßzahlen, die drei Normfarbwerte *X*, *Y* und *Z*, werden aus der spektralen Reflexionskurve $R(\lambda)$ einer Farbe, der Strahlung des beleuchtenden Lichts und den drei Normspektralwertfunktionen $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$ bestimmt, welche die drei Empfindlichkeiten des internationalen Normalbeobachters beschreiben.

Bild 2_37 zeigt die drei Normspektralwertfunktionen $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$ für Lichtart *E* (energiegleiche Strahlung) zwischen 380 nm und 720 nm. In Bild 2_37 deuten die drei Kurvenfarben an, daß die Strahlung durch drei Farbwerte *O* (Orangerot), *L* (Laubgrün) und *V* (Violettblau) bewertet wird.

Aus den Normspektralwertfunktionen und dem physikalischen Farbreiz werden die Normfarbwerte *X*, *Y* und *Z* berechnet. Die Anteile

x = X / (X + Y + Z),y = Y / (X + Y + Z),z = Z / (X + Y + Z) = 1 - x - y(2.11_1)

werden "Normfarbwertanteile" genannt.

Bild 2_38 zeigt die Normspektralwerte in einer genaueren Schwarzweiß-Darstellung. Die zu Spektralfarben gehörigen Anteile

$$\begin{aligned} x(\lambda) &= \overline{x}(\lambda) / \left[\overline{x}(\lambda) + \overline{y}(\lambda) + \overline{z}(\lambda) \right], \\ y(\lambda) &= \overline{y}(\lambda) / \left[\overline{x}(\lambda) + \overline{y}(\lambda) + \overline{z}(\lambda) \right], \\ z(\lambda) &= \overline{z}(\lambda) / \left[\overline{x}(\lambda) + \overline{y}(\lambda) + \overline{z}(\lambda) \right] = 1 - x(\lambda) - y(\lambda) \end{aligned}$$
(2.11_2)

werden "Normspektralwertanteile" genannt und legen die im Bild 2_39 dargestellte Normfarbtafel fest.

Bild 2_39Normfarbtafel (x, y) 8310_21 Normfarbtafel (x, y) des Normvalenzsystems CIE 1931 (nach DIN 5033 Teil 2)

Die Normspektralwertanteile begrenzen die in **Bild 2_39** dargestellte sogenannte "Normfarbtafel". Gemeinsam mit der sogenannten Purpurgeraden entsteht eine geschlossene Fläche. Die Purpurgerade entsteht durch Verbindung der Farborte des kurzwelligen und langwelligen Spektralendes, angenähert $\lambda = 380$ nm und $\lambda = 720$ nm.

Alle physikalisch realisierbaren Farben oder "reellen" Farben haben Farbörter *innerhalb* oder auf dem Rand der Normfarbtafel. Die nicht realisierbaren und nur mathematisch angebbaren Farbörter *außerhalb* der Normfarbtafel gehören zu "virtuellen" Farben.

Die Normfarbwertanteile x und y sowie der Hellbezugswert Y, der nach den Normen DIN 5033 "Farbmessung" für Weiß den Wert 100 erhält, kennzeichnen eine Farbe ebenso eindeutig wie die drei Normfarbwerte X, Y und Z. Die numerischen Werte der Normfarbwerte X, Y und Z liegen nach den Normen über Farbmessung im allgemeinen zwischen den numerischen Werten 0 und 100. Die Normfarbwertanteile sind stets kleiner als 1,0. Sie kennzeichnen den Farbort einer Farbe in der Normfarbtafel mit den rechtwinkligen Koordinaten x und y.

Weitere Eigenschaften der Normspektralwerte und der Normfarbtafel werden im Kapitel 3 "Normfarbwerte und Farbmessung" dargestellt.

Bild 2_40 zeigt die Elementarfarben von *Miescher* in der Normfarbtafel. Die Farbmuster sind nicht auf einem Kreis um den Farbort von Tageslicht *D65* (x = 0,31, y = 0,33) angeordnet. Die Elementarfarben Gelb *J* und Blau *B* liegen mit Unbunt *D65* angenähert auf einer Geraden, das heißt, man kann die beiden Farben in einem geeigneten Mischverhältnis additiv zu Unbunt mischen. Die Elementarfarben Rot *R* und Grün *G* liegen mit Unbunt *D65 nicht* auf einer Geraden, das heißt, sie mischen sich additiv nur zu gelblichgrünen, gelblichen oder gelblichroten Farben und niemals zu Unbunt *D65*.

In der Normfarbtafel gehört zu jedem Farbort (x, y) eine ganze Farbreihe mit verschiedenen Hellbezugswerten Y zwischen nahezu 0 und maximal 100. Deshalb kann eine Farbe mit konstantem Farbort (x, y) im Farbtafelbereich Gelb sowohl nahezu Schwarz (z. B. mit dem Hellbezugswert Y = 4) als auch kräftig Gelb (z. B. mit dem Hellbezugswert Y = 90) erscheinen. Erst der Farbort zusammen mit dem Hellbezugswert definiert eine Farbe und damit ihre Erscheinung nahezu eindeutig (nahezu, weil die Farberscheinung auch durch den Farbort des Umfelds sowie räumliche und zeitliche Faktoren bestimmt wird).

Man kann nicht an jedem Farbort (x, y) alle diese verschiedenen Farben mit verschiedenen Hellbezugswerten, die eine Schattenreihe in der Natur darstel-

len, drucken. Hierzu müßte man eine Schar von Normfarbtafeln mit jeweils konstantem Hellbezugswert reproduzieren.

2.13 Farbmischung

2.13.1 Dichromatische additive Farbmischung

Die additive Mischung von zwei Farben nennt *Miescher* eine dichromatische Farbmischung. Entsprechend nennt man eine Mischung von drei Farben eine trichromatische Farbmischung. Die Mischung von zwei kompensativen Farben, die in der additiven Mischung zu unbunten Farben führen kann, nennt man nach *Miescher* (1961, 1965) eine antichromatische Farbmischung.

Farben beliebiger spektraler Zusammensetzung können mit einem spektralen Farbmischgerät, vgl. Bild 2_30, Seite 39, bis hin zu den theoretischen Grenzen für Körperfarben, den sogenannten Optimalfarben, durch additive Farbmischung erzeugt werden.

Optimalfarben, die zuerst eingehend vom Physiker *E. Schrödinger* (1920) untersucht wurden, sind durch ein oder höchstens zwei Sprungstellen der spektralen Reflexionskurve zwischen 0,0 und 1,0 gekennzeichnet. Optimalfarben lassen sich mit einem spektralen Farbmischgerät durch Schablonen erzeugen, die ein oder zwei senkrechte Kanten im Spektrum besitzen.

Bild 2_41 Dichromatische additive Optimalfarben *V*, *Y* 8541_1, 8541_2 Rechteckförmige Reflexionskurven $R(\lambda)$ im Spektralbereich zwischen 380 nm und 720 nm für:

- Violettblau V mit $R(\lambda) = 1$ bis zur Wellenlänge $\lambda = 490$ nm (*oben links*),
- Gelb *Y* (yellow) mit $R(\lambda) = 1$ ab der Wellenlänge $\lambda = 490$ nm (*oben rechts*)

Bild 2_41 zeigt ein kompensatives Paar von zwei Optimalfarben Violettblau V und Gelb Y, die sich additiv zu Weiß W mischen.

Weiß läßt sich aus irgendwelchen Paaren sogenannter kompensativer (oder komplementärer) Optimalfarben (z. B. Violettblau und Gelb) additiv ermischen. Im folgenden benutzen wir ein in den Reproduktionsprozessen verwendetes grünliches Gelb, das wir wie üblich mit Y (= yellow) abkürzen, und ein Violettblau V.

Die Reflexionskurve der Optimalfarbe Violettblau *V* hat eine Sprungstelle vom Wert 1,0 auf 0,0 bei 490 nm. Ihre Reflexionskurve hat den Wert 1,0 zwischen 380 nm und 490 nm und den Wert 0,0 zwischen 490 nm und 720 nm.

Die Reflexionskurve der Optimalfarbe Gelb *Y* besitzt den Wert 0,0 zwischen 380 nm und 490 nm, hat eine Sprungstelle vom Wert 0,0 auf 1,0 bei 490 nm, und zwischen 490 nm und 720 nm ist der Wert 1,0.

Die additive Mischung der beiden Optimalfarben *V* und *Y* ergibt eine unbunte Farbe mit einer spektralen Reflexionskurve $R(\lambda) = 1,0$ für alle Wellenlängen, die Weiß erscheint.

Bild 2_42 Vier Elementarfarben *J*, *R*, *B* und *G* 8541_3 Symmetrischer Elementarfarbkreis mit den vier Elementarfarben *J* (Gelb = jaune), *R* (Rot), *B* (Blau) und *G* (Grün)

Die hier gezeigten Grundfarben Gelb Y und Violettblau V sind verschieden von den Elementarfarben Gelb J und Blau B. **Bild 2_42** zeigt die Elementarfarben Gelb J, Rot R, Blau B und Grün G im symmetrischen Elementarfarbkreis.

Bild 2_43Bunttonkreis sechsteilig 8541_4 Sechsteiliger Bunttonkreis des Reproduktionsbereichs (Farbgrafik, Farbfilm, Farbfernsehen, Mehrfarbendruck)

Bild 2_43 zeigt, daß die Farben Gelb *Y* und Violettblau *V* aus einem sechsteiligen Bunttonkreis stammen, der Grundlage der Farbreproduktion ist. Nach der Anordnung im symmetrischen Bunttonkreis erscheint Gelb *Y* schwach grünlich gegenüber Gelb *J* und Violettblau *V* schwach rötlich gegenüber Blau *B*.

Bild 2_44 Dichromatische Farbwertein Farbmetrik 8541_5 Farbwerte F = Y oder V zwischen 0 und100 in der Farbmetrik; Zusammenhang mitSchwarzwert N, Weißwert W und BuntwertC von Farben

Bild 2_44 veranschaulicht die Farbwerte F und die Mischfarben aus Eigenfarbe Gelb Y und der Kompensativfarbe Violettblau V zu Weiß W, Zentralgrau Z und einer gelben Farbe y am unteren Rand.

Bild 2_44 zeigt links die Farbwerte *F* der Eigenfarbe *Y* und Kompensativfarbe *V* bei Mischung von Weiß mit dem spektralen Reflexionsfaktor vom Betrag 1,0 überall. Es gilt im linken Teil: Weißwert W = 100, Schwarzwert N = 0 und Buntwert C = 0. Die Mischfarbe *W* ist unten links angegeben.

Verwendet man von Eigenfarbe *Y* und Kompensativfarbe *V* nur jeweils 25%, so entsteht die unbunte Farbe Zentralgrau *Z*, indem man die Masken am spektralen Farbmischgerät so wählt, daß die Reflexionskurven nur zwei Sprungstellen zwischen 0,0 und 0,25 haben. In Bild 2_44 gilt im mittleren Teil mit Zentralgrau *Z*: Weißwert W = 25, Schwarzwert N = 75 und Buntwert C = 0.

Überwiegt die Eigenfarbe *Y* gegenüber der Kompensativfarbe *V*, so entsteht eine bunte Farbe, die den Buntton der Eigenfarbe besitzt. In Bild 2_44 gilt im

rechten Teil: Weißwert W = V = 15, Schwarzwert N = 100 - Y = 50 und Buntwert C = Y - V = 35.

In der Farbmetrik und der Digitaltechnik sind unterschiedliche Normierungen der Farbwerte gebräuchlich. Bild 2_44 zeigt die Normierung der Farbwerte in der Farbmetrik zwischen 0 und 100.

Bild 2_45Dichromatische Farbwerte			
in Digitaltechnik	8541_6		
Farbwerte $D = Y$ oder V zwische	en 0 und		
255 in der digitalen Bildtechnik	; Zusam-		
menhang mit Schwarzwert N, W	Veißwert W		
und Buntwert C von Farben			

8541_7, 8541_8

Bild 2_45 zeigt die Normierung der Farbwerte *D* zwischen 0 und 255 in der Digitaltechnik.

Die Bildverarbeitung führt bevorzugt zu Arbeiten mit gleichabständigen Reihen, die sich in erster Näherung durch die Quadratwurzel aus den Farbwerten ergeben. Die entsprechenden Koordinaten sind die Farbheiten F^* der Farbmetrik oder die Farbheiten D^* der Digitaltechnik.

Bild 2_46Farbheiten in Farbmetrik und Digitaltechnik Farbheiten $F^* = Y^*$ oder V^* :

• zwischen 0 und 10 in der Farbmetrik (oben links),

• zwischen 0 und 15 in der Digitaltechnik (oben rechts).

Zusammenhang mit Schwarzheit N^* , Weißheit W^* und Buntheit C^* von Farben.

Bild 2_46 zeigt links die Farbheiten $F^* = Y^*$ oder V^* zwischen 0 und 10 in der Farbmetrik, wie sie z. B. im *Munsell*-Farbsystem verwendet werden. Bild 2_46 zeigt rechts die Farbheiten D^* zwischen 0 und 15 in der digitalen Bildtechnik, wie sie z. B. in der CEPT-Norm für Bildschirmtext (Btx) verwendet werden. Die entsprechenden Koordinaten Weißheit W^* , Schwarzheit N^* und Buntheit C^* sind aus den Bildern abzulesen.

2.13.2 Trichromatische additive Farbmischung

Weiß läßt sich auch aus drei Optimalfarben, z. B. Orangerot *O*, Laubgrün *L* und Violettblau *V*, additiv ermischen. Nach *Miescher* nennt man diese Mischung aus drei Grundfarben eine *trichromatische* Mischung.

Bild 2_47 Trichromatische additiveFarbmischung 8550_1 Additive Farbmischung aus GrundfarbenO, L und V zu Mischfarben M, C und Ysowie zur Mischfarbe Weiß W

Bild 2_47 zeigt die drei Grundfarben Orangerot O, Laubgrün L und Violettblau V der additiven Farbmischung sowie die drei Mischfarben Gelb Y, Cyanblau C und Magentarot M. Weiß entsteht als Mischfarbe aus allen drei Grundfarben.

Bild 2_48 zeigt die Lage der Grund- und Mischfarben der additiven Farbmischung O, L und V sowie Y, M, C und W relativ zu den Elementarfarben (J, R, B und G). Man beachte insbesondere die Nichtübereinstimmung von O mit R bzw. L mit G, die unterschiedliche Farbnamen erzwingen.

- Orangerot O mit R(λ) = 1 ab der Wellenlänge 590 nm,
- Laubgrün *L* mit $R(\lambda) = 1$ zwischen den Wellenlängen 490 nm und 590 nm,
- Violettblau V mit R(λ) = 1 bis zu der Wellenlänge 490 nm

Bild 2_49 zeigt drei Optimalfarben Orangerot O, Laubgrün L und Violettblau V, die sich additiv zu Weiß mischen. Die additive Mischung verschiedener Anteile aus den drei Grundfarben, z. B. Orangerot O, Laubgrün L und Violettblau V, ist von allgemeiner Bedeutung.

Entsprechend Bild 2_50 können die Farbwerte der Grundfarben O, L und V nach ihrer Größe geordnet werden, z. B. $O \ge L \ge V$.

Bild 2_50 zeigt die Farbwerte F = O, L und V zwischen 0 und 100 in der Farbmetrik. Der Zusammenhang mit Schwarzwert N, Weißwert W und Buntwert C von Farben ist angegeben und auch aus der folgenden Tabelle zu entnehmen.

Farbmischung und Farbmerkmale der niederen und höheren Farbmetrik						
		Art der F	Art der Farbmischung			
		dichromatisch	trichromatisch			
Niedere Farl	o- ode	•				
Valenzmetri	k:					
Weißwert	W	V	V			
Schwarzwert	N	100 - Y	100 - O			
Buntwert	С	Y - V	O-V			
Höhere Farb- oder						
Empfindung	metril	K:				
Weißheit	W^*	V^*	V^*			
Schwarzheit	N^*	$100 - Y^*$	$100 - O^*$			
Buntheit	C^*	$Y^* - V^*$	$O^* - V^*$			

Tabelle 2_1 Farbmischung, -werte und -heiten in Farbmetrik7330_7Farbmischung, -werte und -heiten der niederen und höheren Farbmetrik sowie ihrenZusammenhang mit Farbwerten Y und V der dichromatischen sowie O, L und V dertrichromatischen Farbmischung

Tabelle 2_1 zeigt die Farbmischung und die Farbmerkmale sowie ihren Zusammenhang mit Farbwerten *Y* und *V* der dichromatischen sowie *O*, *L* und *V* der trichromatischen Farbmischung. Die Farbmerkmale der Höheren Farbmetrik benutzen die Farbheiten (Weißheit, Schwarzheit, Buntheit), die in der Tabelle duch das Zeichen * gekennzeichnet sind, zum Beispiel die Weißheit $W^* = V^*$.

Die Abkürzungen in Bild 2_44 auf Seite 49 sowie Bild 2_50 auf Seite 52 und Tabelle 2_1 bedeuten:

Bild	2_44 auf Seite 49:				
Y	Eigenfarbe			V	Kompensativfarbe
W	Weiß	Ζ	Zentralgrau	у	Hellgelb
Bild	2_50 auf Seite 52:				
0	Orangerot			L	Laubgrün
V	Violettblau			J R	Gelbrot

Die Farbwerte von Eigenfarbe *Y* und Kompensativfarbe *V* bzw. der drei Grundfarben Orangerot *O*, Laubgrün *L* und Violettblau *V* stehen in der Tabelle in einem einfachen Zusammenhang mit den *Ostwald*schen valenzmetrischen Farbmerkmalen Weißwertanteil *w*, Schwarzwertanteil *n* und Buntwertanteil *c*. Es gilt (vgl. Bild 2_44 auf Seite 49 und Bild 2_50 auf Seite 52):

- Schwarzwert / 100 Schwarzwertanteil = =
- Buntwertanteil С

Schwarzwert / 100 =
$$N$$
 / 100
Buntwert / 100 = C / 100

Bild 2_51 Trichromatische Farbwerte OLV in Digitaltechnik 8550_6 Farbwerte D = O, L oder V zwischen 0 und 255 in der digitalen Bildtechnik; Zusammenhang mit Schwarzwert N, Weißwert W und Buntwert C von Farben

Bild 2_51 zeigt den Übergang von der Normierung der Farbwerte zwischen 0 und 100 in der Farbmetrik auf die Normierung 0 bis 255 in der Digitaltechnik. Aus den Farbwerten der Farbmetrik oder Digitaltechnik können der Weißwert W, der Schwarzwert N und der Buntwert C berechnet werden. Wegen der nichtlinearen Zusammenhänge zwischen Farbwert und Farbheit bzw. Digitalwert und Digitalheit ist der Quotient Weißwert / Schwarzwert und Weißheit / Schwarzheit in der Regel sehr unterschiedlich.

• zwischen 0 und 10 in der Farbmetrik (oben links),

• zwischen 0 und 15 in der Digitaltechnik (oben rechts).

Zusammenhang mit Schwarzheit N^* , Weißheit W^* und Buntheit C^* von Farben (Werte zwischen 0 und 100 in CIELAB).

Bild 2_52 zeigt die Farbheiten F^{*} in Farbmetrik bzw. D^{*} in der Digitaltechnik mit den Farbheiten O*, L* oder V* zwischen 0 und 10 in der Farbmetrik (oben links) und zwischen 0 und 15 in der digitalen Bildtechnik (oben rechts). Der

п

Zusammenhang mit der Schwarzheit N^* , der Weißheit W^* und der Buntheit C^* von Farben ist angegeben. Man beachte, daß in der modernen Farbmetrik im Farbenraum CIELAB z. B. die Helligkeit zwischen 0 und 100 variiert.

Die bekannteste technische Anwendung der additiven Farbmischung ist der Farbfernsehempfänger und der Rechner-Farbmonitor. Hier wird das Schirmbild aus Tripeln von nebeneinander liegenden Rasterpunkten Orangerot *O*, Laubgrün *L* und Violettblau *V* ermischt, die in ihren Leuchtdichten durch den Fernsehsender oder Rechner gesteuert werden. Auf dem Fernsehempfänger gibt es 1,2 Millionen Leuchtpunkte, die vom Beobachterauge bei normalen Sehbedingungen in etwa 3 m Abstand nicht mehr getrennt wahrgenommen werden. Es entsteht dabei eine additive Rasterfarbmischung.

2.13.3 Trichromatische subtraktive Farbmischung

Die Einfügung dreier geeigneter Farbfilter eines nach dem anderen in den Weg eines Lichtstrahls führt (in einer weißen Umgebung) zu Schwarz, wenn nahezu alles Licht absorbiert wird. Im Gegensatz zur vorher beschriebenen Art der additiven Farbmischung werden jetzt Filter in nur einem Lichtstrahl hintereinandergeschaltet.

Zur subtraktiven Farbmischung eignen sich drei spezielle Filter, deren spektrale Transmissionskurven denen der Optimalfarben Gelb *Y*, Cyanblau *C* und Magentarot *M* entsprechen. **Bild 2_53** zeigt die subtraktive Farbmischung aus Grundfarben *Y*, *M* und *C*, die sich zu *O*, *L* und *V* mischen, sowie die Mischfarbe Schwarz N (= noir) aus allen drei Grundfarben.

Bild 2_54 Subtraktive Grund-, Misch-
und Elementarfarben 8551_4 Lage der Grund- und Mischfarben der sub-
traktiven Farbmischung Y, M und C sowie
O, L, V und N relativ zu den Elementarfar-
ben (J, R, B und G)

Bild 2_54 zeigt die Lage der Grund- und Mischfarben der subtraktiven Farbmischung Y, M und C sowie O, L, V und N relativ zu den Elementarfarben (J, R, B und G). Man beachte insbesondere die Nichtübereinstimmung von R mit M, das in der Drucktechnik oft mit Rot bezeichnet wird, und von B und C, das in der Drucktechnik oft mit Blau bezeichnet wird.

Bild 2_55 Trichromatische subtraktive

Farben 8571_4, 8571_6, 8571_7 Spektrale Reflexionsfaktoren $R(\lambda) = 0$ oder $R(\lambda) = 1$ der Optimalfarben:

- Gelb *Y* mit $R(\lambda) = 1$ ab der Wellenlänge 490 nm (*oben links*),
- Magentarot *M* mit $R(\lambda) = 1$ bis zur Wellenlänge 490 nm und ab 590 nm,
- Cyanblau *C* mit $R(\lambda) = 1$ bis zur Wellenlänge 590 nm (*unten links*)

Bild 2_55 zeigt die spektralen Reflexionsfaktoren $R(\lambda)$ bzw. Transmissionsfaktoren $\tau(\lambda)$ von Filtern, die sich zur subtraktiven Farbmischung besonders eignen: Die Optimalfarbe Gelb *Y* mit $R(\lambda) = 1$ ab der Wellenlänge 490 nm, die Optimalfarbe Magentarot *M* mit $R(\lambda) = 1$ bis zur Wellenlänge 490 nm und ab

590 nm sowie die Optimalfarbe Cyanblau *C* mit $R(\lambda) = 1$ bis zur Wellenlänge 590 nm.

Bild 2_56Farbwerte CMY in				
Farbmetrik	8551_5			
Farbwerte $F = C, M$ oder Y zw	vischen 0			
und 100 in der Farbmetrik; Zus	sammen-			
hang mit Schwarzwert N, Weiß	wert W und			
Buntwert C von Farben				

Bild 2_56 zeigt eine in der Literatur über den Mehrfarbendruck oft angegebene Möglichkeit zur Kennzeichnung der Mischfarben aus den drei Normdruckfarben Gelb Y, Magentarot M und Cyanblau C. Beim Überwiegen von Gelb Y und Magentarot M gegenüber Cyanblau C wird die Mischung von Y und M zunächst zu Orangerot O führen. Da Gelb überwiegt, muß der ermischte Buntton eine gelblichrote Farbe J ... R sein.

Bild 2_57 zeigt die in der digitalen Bildtechnik verwendete Normierung der Farbwerte zwischen 0 und 255.

Bild 2_58 Farbheiten *CMY** in **Farbmetrik**, **Digitaltechnik** 8551_7, 8551_8 Farbheiten $F^* = C^*$, M^* oder Y^* :

• zwischen 0 und 10 in der Farbmetrik (*oben links*),

• zwischen 0 und 15 in der Digitaltechnik (oben rechts).

Zusammenhang mit Schwarzheit N^* , Weißheit W^* und Buntheit C^* von Farben (Werte zwischen 0 und 100 in CIELAB).

Bild 2_58 zeigt die Farbheiten F^* der Farbmetrik bzw. D^* der Digitaltechnik für eine trichromatische subtraktive Farbmischung.

Die bekannteste technische Anwendung der subtraktiven Farbmischung ist die Farbfotografie. In einem Farbumkehrfilm gibt es drei übereinanderliegende Farbfilterschichten, Gelb Y, Cyanblau C und Magentarot M. Die Transmissionsfaktoren der Schichten werden durch die Belichtung und den anschließenden Entwicklungsprozeß des Films gesteuert.

Beim Mehrfarbendruck tritt additive Farbmischung auf, wenn die Farben nebeneinander gedruckt werden, und es tritt subtraktive Farbmischung auf, wenn die transparenten Druckfilmschichten übereinander gedruckt werden. Man spricht beim Druck auch von *autotypischer* Mischung.

2.14 Strahlung

Farben gleicher Erscheinung können aus sehr unterschiedlichen spektralen Strahlungen bestehen. Die moderne Farbmetrik kann mit Hilfe von numerischen Verfahren solche metameren (oder bedingt gleichen) Farben unter Berücksichtigung der Beleuchtung berechnen.

Bild 2_59 zeigt die CIE-Testfarbe Nr. 11 (Grün) und eine für *D65* metamere Farbe von Rechteckform. Man versucht heute, metamere Farben an verschiedenen Teilen industrieller Gegenstände weitgehend zu vermeiden, da metamere Farben nur bei einer beleuchtenden Lichtart gleich aussehen. Beim Wechsel von z. B. Tageslicht zu Glühlampenlicht treten Farbunterschiede auf, metamere Farben sehen nicht mehr gleich aus. Farbmuster (entweder aus gleichem oder unterschiedlichem Material), die noch bei Lichtartwechsel gleich aussehen sollen, müssen identische Reflexionskurven besitzen. Für industrielle Zwecke wird dieses Ziel durch Farbrezepturberechnung mit Hilfe von Spektrometern erreicht.

Bild 2_60 Relative spektrale Strahlungen

Relative spektrale Strahlungsverteilung $S(\lambda)$ einer:

- Dreibanden-Leuchtstofflampe hoher Lichtausbeute (Energiesparlampe, oben links),
- *Planckschen Strahlung der Farbtemperatur 4000 K (oben rechts)*

Bild 2_60 zeigt die relative spektrale Strahlungsverteilung $S(\lambda)$ einer Dreibanden-Leuchtstofflampe hoher Lichtausbeute (Energiesparlampe) und einer (hypothetischen) Lichtquelle, die nach dem *Planck*schen Strahlungsgesetz strahlt. Beide Beleuchtungen sehen trotz sehr unterschiedlicher Strahlung gleich (weiß) aus. Alternative Beleuchtung von bunten Testfarben mit metameren Lichtquellen ergibt aber Unterschiede in der Farberscheinung der Testfarben. Man spricht von unterschiedlicher Farbwiedergabe, vgl. DIN 6169 "Farbwiedergabe". Die in Bild 2_59 auf Seite 59 gezeigten beiden metameren grünen Farben, die für Tageslicht *D65* gleich aussehen, erscheinen unter den beiden in Bild 2_60 dargestellten Strahlungen sehr unterschiedlich.

2.15 Kontrast

Der Kontrast, schon *Leonardo da Vinci* bekannt und von *Goethe* (1749_1832) eingehend beschrieben, ist *eines der wichtigsten Ausdrucksmittel* in Kunst, Kunstgewerbe und Design.

2.15.1 Unbuntkontrast

Das Farbmerkmal Helligkeit eines Infelds in verschieden hellen Umfeldern verschiebt sich im *polaren Gegensinne*.

Bild 2_61 Unbuntkontrast: Umfeld und Feldgröße 8560_6, 8560_7, 8560_8 Helligkeitserscheinung von vier physikalisch identischen gleichabständigen Graureihen auf vier verschieden Umgebungen: große, mittlere und kleine Mustergröße (oben links, oben rechts und unten links) Zum Beispiel verschiebt sich die Helligkeit der Stufen von vier physikalisch *gleichen* Graureihen je nach Umfeld. Ohne helleres Bezugsfeld gibt es kein Grau oder Schwarz.

Bild 2_61 zeigt vier unbunte Graureihen von Schwarz nach Weiß auf vier verschieden hellen Umfeldern. Die OLV^* -Codierung soll andeuten, daß es sich auf mittelgrauer Umgebung um eine visuell gleichabständig gestufte Graureihe handelt, die angenähert die CIELAB-Helligkeiten $L^* = 15, 25, 35, ..., 95$ besitzt. In weißem Umfeld erscheinen die Farbmuster dunkler und in einem schwarzen Umfeld heller als in einem mittelgrauen (Z = Zentralgrau, hier nur als Infeld vorhanden) Umfeld.

Eine gleichabständige Farbstufung mit 100 Teilen wird nach *Miescher* (1961) auf weißem, mittelgrauem und schwarzem Umfeld erreicht, wenn für die Hellbezugswerte *Y* der unbunten Farben folgende Formeln gelten:

• weißes Umfeld

$$L_{\rm w}^{\star} = 100 \left(Y / 100 \right)^{1/2}$$
 (2.15.1_1)

Der Hellbezugswert für eine mittelgraue Stufe mit $L_{w}^{*} = 50$ beträgt nach dieser Formel Y = 25.

• mittelgraues Umfeld

$$L_{\rm z}^{*} = 100 \left(Y / 100 \right)^{1/2,4}$$
 (2.15.1_2)

Der Hellbezugswert für eine mittelgraue Stufe mit $L_z^* = 50$ beträgt nach dieser Formel Y = 19.

• schwarzes Umfeld

$$L_{\rm n}^{\star} = 100 \left(Y / 100 \right)^{1/3,0} \tag{2.15.1_3}$$

Der Hellbezugswert für eine mittelgraue Stufe mit $L_n^* = 50$ beträgt nach dieser Formel Y = 12,5.

Auf mittelgrauer Umgebung hat die mittelgraue Stufe mit Y = 19 im Original die Helligkeit $L_z^* = 50$. Nach obigen Formeln hat diese auf weißer Umgebung die relative Helligkeit $L_w^* = 43,6$ und auf schwarzer Umgebung die relative Helligkeit $L_n^* = 57,5$.

Die Formeln für die Graustufung auf verschiedenen Umfeldern sind nur ein erster Anhaltspunkt für die Beschreibung des Kontrastes durch verschiedenartige Beeinflussung der Sehfelder. Die absolute Leuchtdichte ist ebenso von Bedeutung für diese Stufung. Mit steigender Leuchtdichte nimmt die Unterscheidbarkeit der einzelnen Graustufen etwas zu. Weiß erscheint immer weißer und Schwarz immer schwärzer mit steigender Leuchtdichte, das heißt, auch der Farbunterschied zwischen Weiß und Schwarz steigt an. Bei einer Erhöhung der Beleuchtungsstärke der Graureihe von etwa 500 lux auf 5000 lux erhöht sich die Unterscheidbarkeit um etwa 20%. Der Effekt ist klein verglichen mit der Beleuchtungsstärke-Änderung.

Bild 2_61 enthält drei Einzel-Bilder mit verschiedener Feldgröße der Infelder im Vergleich zum Umfeld. Ein Vergleich zeigt, daß die Feldgröße eine wichtige Rolle beim Unbuntkontrast spielt. Bei etwa 1^o Infeldgröße sind die Kontrast-Effekte am größten, falls das Umfeld nicht zu klein ist.

2.15.2 Buntkontrast

Die Farbe eines bunten Umfelds verschiebt die Farberscheinung des Infelds bezüglich aller Farbmerkmale im *polaren Gegensinne*.

Bild 2_62Buntkontrast: Umfeld und Feldgröße

8561_3, 8561_4

Drei physikalisch identische Buntheitsreihen mit gleichabständigen Stufen für mittlere und kleine Feldgröße (Muster auf Umfeld getrennt liegend):

• auf mittelgrauer sowie roter und grüner Umgebung (oben links),

• auf mittelgrauer sowie gelber und blauer Umgebung (oben rechts)

Bild 2_62 zeigt drei identische Buntheitsreihen mit angenähert gleichabständigen Stufen in einem mittelgrauen Umfeld Z, das die Referenzbedingung ist, sowie in Umgebungen Rot R und Grün G. Im Bild 2_62 erscheinen die roten Farbmuster auf grüner Umgebung röter als in roter Umgebung. Die grünen Farbmuster erscheinen auf roter Umgebung grüner als in grüner Umgebung. Auch die grauen Farbmuster Z in der Mitte erscheinen nicht länger unbunt, sondern werden im *polaren Gegensinne* beeinflußt.

- schwarz (oben links),
- mittelgrau (oben rechts),
- weiß (unten links)

Bild 2_63 zeigt eine weitere wichtige Eigenschaft des Unbunt- und Buntkontrastes für Farben aus der Bunttonebene Rot – Grün.

Die Farbenvielfalt und der Farbumfang erscheinen auf mittelgrauer Umgebung weit größer als auf schwarzer oder weißer Umgebung. Auf schwarzer Umgebung erscheinen die meisten Farben lichthaft, es *fehlt* die wichtige Komponente "*verschwärzlicht*". Auf weißer Umgebung erscheinen die meisten Farben "verschwärzlicht", es *fehlt* die Komponente "*leuchtend*".

Bild 2_64 Einfluß Umfeld auf *JB*-Farbstufung 8561_8, 8520_3, 8561_6 Vertikaler Schnitt durch den Farbdoppelkegel in der Bunttonebene Gelb – Blau auf den Umgebungen: schwarz (*links oben*),

- mittelgrau (rechts oben),
- weiß (links unten)

Bild 2_64 zeigt die gleiche Eigenschaft des Unbunt- und Buntkontrastes für Farben aus der Bunttonebene Gelb – Blau.

Auch hier erscheinen die Farbenvielfalt und der Farbumfang auf mittelgrauer Umgebung weit größer als auf schwarzer oder weißer Umgebung.

Die Änderung der visuellen Erscheinung von Farben durch die Umgebungsfarbe hängt von den physiologischen Prozessen im Auge ab. Bis heute ist eine Beschreibung dieser Prozesse nur in Ansätzen gelungen.

Psychophysikalische und physiologische Ergebnisse über Farbensehen werden in Kapitel 4 "Besondere Eigenschaften des Farbensehens" ab Seite 83 behandelt.

3 Normfarbwerte und Farbmessung

Die auf das Normvalenzsystem bezogenen Farbwerte heißen "Normfarbwerte" X, Y und Z.

Bild 3_1 Normspektralwerte (bunt) 2° -Normvalenzsystem8540_51Normspektralwerte $\overline{x}(\lambda), \overline{y}(\lambda)$ und $\overline{z}(\lambda)$ fürLichtart E (energiegleiche Strahlung) zwischen 380 nm und 720 nm

In **Bild 3_1** deuten die drei Kurvenfarben an, daß die Strahlung durch drei Farbwerte *O* (Orangerot), *L* (Laubgrün) und *V* (Violettblau) bewertet wird. Die in Bild 3_1 und Bild 3_2 gezeigten *spektralen* Bewertungsfunktionen heißen *Normspektralwerte* $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$. Die *spektrale* Bewertung der ins Auge fallenden Lichtstrahlung mit den Normspektralwerten $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$ führt zu den drei Normfarbwerten *X*, *Y* und *Z*. Die Anteile:

$$x = X / (X + Y + Z)$$

$$y = Y / (X + Y + Z)$$

$$z = Z / (X + Y + Z) = 1 - x - y$$
(3.0-1)

werden "Normfarbwertanteile" genannt.

Bild 3_2 zeigt die Normspektralwerte in einer genaueren Schwarz-Weiß-Darstellung. Die zu Spektralfarben gehörigen Anteile:

$$\begin{aligned} x(\lambda) &= \overline{x}(\lambda) / \left[\overline{x}(\lambda) + \overline{y}(\lambda) + \overline{z}(\lambda) \right] \\ y(\lambda) &= \overline{y}(\lambda) / \left[\overline{x}(\lambda) + \overline{y}(\lambda) + \overline{z}(\lambda) \right] \\ z(\lambda) &= \overline{z}(\lambda) / \left[\overline{x}(\lambda) + \overline{y}(\lambda) + \overline{z}(\lambda) \right] = 1 - x(\lambda) - y(\lambda) \end{aligned}$$
(3.0–2)

werden "Normspektralwertanteile" genannt und legen die im Bild 3_3 dargestellte Normfarbtafel fest.

Die Normspektralwertanteile begrenzen die in **Bild 3_3** dargestellte sogenannte "Normfarbtafel". Gemeinsam mit der sogenannten Purpurgeraden entsteht eine geschlossene Fläche. Die Purpurgerade entsteht durch Verbindung der Farbörter des kurzwelligen und langwelligen Spektralendes, angenähert $\lambda = 380$ nm und $\lambda = 720$ nm.

Alle physikalisch realisierbaren Farben oder "reellen" Farben haben Farbörter innerhalb oder auf dem Rand der Normfarbtafel. Die nicht realisierbaren und nur mathematisch angebbaren Farbörter außerhalb der Normfarbtafel gehören zu "virtuellen" Farben.

Die Normfarbtafel ist ein rechtwinklig gleichschenkliches Diagramm mit den Koordinatenachsen x in horizontaler und y in vertikaler Richtung. Die Normfarbtafel dient zur Eintragung des Normfarborts (x, y) einer Farbe. Jeder Normfarbort [$x(\lambda)$, $y(\lambda)$] einer Spektralfarbe liegt auf dem Rand.

Die heutige normgerechte und gleichzeitig gebräuchlichste Kennzeichnung der Farbvalenzen benutzt die drei Normfarbwerte X, Y, Z oder die zwei Normfarbwertanteile x, y zusammen mit dem Hellbezugswert Y bei Körperfarben. (Bei Selbstleuchtern genügt die Angabe der Normfarbwertanteile.)

Es gibt zwei Normvalenzsysteme, je eines für den 2° - und für den 10° -Beobachter. Die Unterschiede sind dadurch bedingt, daß sich die Spektralwertfunktionen des menschlichen Auges mit der vom Beobachter gesehenen Feldgröße ändern. Die Spektralwertfunktionen ändern sich hauptsächlich durch eine gelbe Pigmentierung in der Fovea (ca. 2° Durchmesser). Messungen mit vielen Beobachtern haben 1931 zur Definition eines 2^o-(Kleinfeld-)Beobachters und 1964 zum 10^o-(Großfeld-)Beobachter geführt.

Man muß beachten, daß grundsätzlich keine Umrechnung zwischen den Farbwerten des 2^o- und 10^o-Beobachters bzw. des 2^o- und 10^o-Normvalenzsystems möglich ist.

Bild 3_4Normspektralwerte10°-Normvalenzsystem8310_3Normspektralwerte des 10°-(Großfeld-)Beobachters; nach DIN 5033 Teil 2

Die Normspektralwertfunktionen des 10^o-Normvalenzsystems sind in **Bild 3_4** dargestellt. Man hat in der internationalen Beleuchtungskommission (CIE) vereinbart, alle Normfarbwerte und Normfarbwertanteile des 10^o-Normvalenzsystems durch einen Index 10 zu kennzeichnen. Beim 2^o-Normvalenzsystem wird der Index 2 weggelassen.

Bild 3_5 zeigt die zugehörige Normfarbtafel für das 10^o-Normvalenzsystem.

Bis 1964 wurde in der Praxis ausschließlich das 2^o-Normvalenzsystem benutzt. Da man beim Farbabmustern in der Regel größere Gesichtsfelder als 2^o beurteilt, setzt sich in der Industrie mehr und mehr das 10^o-Normvalenzsystem durch. Vorwiegend im Bereich Farbgrafik sowie bei der Signalbeobachtung treten kleinere Gesichtsfelder auf, so daß auch weiterhin für das 2^o-Normvalenzsystem Bedarf besteht. Zur Ermittlung der Normfarbwerte eines Farbmusters stehen drei Verfahren zur Verfügung:

- Gleichheitsverfahren (vgl. DIN 5033 Teil 3),
- Spektralverfahren (vgl. DIN 5033 Teil 4),
- Dreibereichsverfahren (vgl. DIN 5033 Teil 5).

Die folgenden Ausführungen geben einige grundsätzliche Hinweise zur Ermittlung der Normfarbwerte.

3.1 Gleichheitsverfahren für Normfarbwert-Ermittlung

Beim Gleichheitsverfahren werden die Normfarbwerte eines Farbmusters durch *visuellen Vergleich* mit Farbmustern aus einem Farbsystem ermittelt, dessen Normfarbwerte bekannt sein müssen.

Im einfachsten Fall wird man bei Benutzung des Gleichheitsverfahrens eine möglichst reichhaltige und systematisch aufgebaute Farbsammlung verwenden, z. B. das Farbsystem CIELAB 1976, dessen Gitterpunkte durch Farbmuster ausgefärbt sind. Solche Farbmustersammlungen sind mit der Bezeichnung Eurocolor (1985) bzw. RAL-Design-System (1993) auf dem Markt. Man wird selten eine genau gleiche Farbe finden. Man muß daher bei höheren Genauigkeitsforderungen die Farbwerte durch Interpolation aus den Farbwerten von sechs bis acht Nachbarfarben interpolieren.

3.2 Spektralverfahren für Normfarbwert-Ermittlung

Beim Spektralverfahren wird jede Farbvalenz als *additive* Mischung aus spektralen Farbvalenzen aufgefaßt. Es müssen deshalb zunächst die Farbwerte der spektralen Farbvalenzen bestimmt und dann alle spektralen Farbvalenzen zur Mischfarbe vereinigt werden.

Bestimmung der Normfarbwerte nach dem Spektralverfahren bedeutet Bestimmung der spektralen Reflexions- bzw. Transmissionsfaktoren einer Probe in der "Spektrometrie", welche zusammen mit einer Strahlungsfunktion $S(\lambda)$ einer Normlichtart die Farbreizfunktion $R(\lambda) \cdot S(\lambda)$ bzw. $\tau(\lambda) S(\lambda)$ festlegen.

Als natürliche Strahlungsfunktion bietet sich die Sonnenstrahlung an. Sie ist jedoch nicht konstant, sondern ändert sich unter anderem mit der Tages- und Jahreszeit sowie der geografischen Lage auf der Erde. Die CIE hat das mittlere Tageslicht festgelegt.

Bild 3_6 zeigt drei verschiedene relative Strahlungsfunktionen mit Normierung auf 100 für 560 nm, die mit *D55*, *D65* und *D75* bezeichnet sind. *D75* ist etwas bläulicher und *D55* etwas rötlicher als das mittlere Tageslicht *D65*. Die im Bild 3_6 gezeigte mittlere Strahlungsfunktion heißt Normlichtart *D65*.

Als weitere Strahlungsfunktionen kommen Strahlungen der Hohlraumstrahler in Frage, die nach dem *Planck*schen Strahlungsgesetz strahlen. Ihre Strahlung als Funktion der Wellenlänge und der absoluten Temperatur *T* wird nach der *Planck*schen Formel berechnet.

Bild 3_7 zeigt drei verschiedene relative Stahlungsfunktionen mit Normierung auf 100 für 560 nm, die mit 4000 K, 6000 K und 8000 K bezeichnet sind. Die Strahlung 8000 K ist etwas bläulicher und die Strahlung 4000 K etwas rötlicher als die Strahlung mit der Bezeichnung 6000 K. Die Strahlung mit der Bezeichnung 6000 K ist ähnlich dem Tageslicht *D65* und hat in etwa einen horizontalen Verlauf.

Bild 3_8 zeigt eine noch rötlichere Strahlung mit der Farbtemperatur $T_n = 2856$ K, die als Normlichtart A definiert ist. Die Glühlampen und Halogenlampen haben eine Strahlungsfunktion, die dieser Strahlung nach dem *Planck*schen Gesetz sehr ähnlich ist. Als weitere Normlichtart wurde das schon in Bild 3_6 dargestellte Tageslicht *D65* festgelegt. Bild 3_8 zeigt die Strahlungsfunktion von Tageslicht *D65* gemeinsam mit der von Normlichtart *A*.

Bild 3_9 zeigt das Prinzip der "Farbvalenzmetrischen Auswertung". Die Ermittlung der Farbreizfunktion, die sich als Produkt aus dem spektralen Reflexionsfaktor $R(\lambda)$ und der Strahlungsfunktion $S(\lambda)$ ergibt, ist der erste Teilschritt.

Im zweiten Teil von Bild 3_9 wird die Farbreizfunktion in der "Farbvalenzmetrischen Auswertung" mit den Farbseheigenschaften des Normalbeobachters rechnerisch vereinigt (vgl. DIN 5033 Teil 4). Hierzu müssen für alle Spektralfarben zwischen 380 nm und 720 nm die Produkte $\bar{x}(\lambda) \cdot S(\lambda) \cdot R(\lambda)$, $\bar{y}(\lambda) \cdot S(\lambda) \cdot R(\lambda)$ und $\bar{z}(\lambda) \cdot S(\lambda) \cdot R(\lambda)$ gebildet werden.

Bild 3_9 zeigt im unteren Teil die Produkte von Normspektralwerten und der Farbreizfunktion, deren Produktsummen die Normfarbwerte *X*, *Y* und *Z* ergeben.

Eine Bestimmung der Normfarbwerte nach dem Spektralverfahren besteht daher grundsätzlich aus zwei Teilen:

- Spektrometrie (Messung der Reflexions- oder Transmissionsfaktoren),
- Farbvalenzmetrische Auswertung, d. h. Berechnung der Produktsummen:

 $X = k \cdot \Sigma [R(\lambda) \cdot S(\lambda) \cdot \overline{x}(\lambda)],$ $Y = k \cdot \Sigma [R(\lambda) \cdot S(\lambda) \cdot \overline{y}(\lambda)],$ $Z = k \cdot \Sigma [R(\lambda) \cdot S(\lambda) \cdot \overline{z}(\lambda)],$ mit $k = 100 / \Sigma [S(\lambda) \cdot \overline{y}(\lambda)].$ (3.2–1)

Die wichtigsten Grundlagen der Spektrometrie und die Gleichungen der "Farbvalenzmetrischen Auswertung" werden im folgenden dargestellt.

3.2.1 Spektrometrie

In der Spektrometrie wird eine rein physikalische Messung vorgenommen, indem die spektralen Reflexions- oder Transmissionsfaktoren bestimmt werden. Die spektrometrische Meßvorrichtung, vgl. z. B. Bild 3_18 auf Seite 81, enthält stets einen Spektralteil zur Erzeugung monochromatischer Strahlung und einen Fotometerteil mit lichtelektrischem Empfänger, den wir verkürzt "Meßkopf" nennen.

Der Spektralteil dient zur Erzeugung monochromatischer Strahlung, d. h. Strahlung eines genügend engen Wellenlängenbereichs. Zur Erzeugung enger Spektralbereiche werden Beugungsgitter, Prismen oder eine Serie von schmalbandigen Interferenzfiltern (Halbwertbreite 10 nm) benutzt.

Bei automatischen Spektrometern wird die Wellenlänge rechnergesteuert von 380 nm bis 720 nm verändert und der spektrale Reflexionsfaktor z. B. in Abständen von 10 nm gemessen und auf einem Bildschirm ausgegeben. Eine Messung mit Blitzlampen dauert in der Regel weniger als eine Sekunde. Die Normfarbwerte X, Y, Z der Meßprobe werden gewöhnlich in einem angeschlossenen PC bestimmt.

3.2.2 Farbvalenzmetrische Auswertung

Die farbvalenzmetrische Auswertung dient zur Bestimmung der Normfarbwerte *X*, *Y*, *Z* einer Meßprobe, deren spektrale Reflexionsfaktoren $R(\lambda)$ oder Transmissionsfaktoren $\tau(\lambda)$ mit einem Spektralfotometer gemessen wurden, im allgemeinen für eine vereinbarte Lichtart mit genormter Strahlung $S(\lambda)$, z. B. die in Bild 3_8 dargestellten Strahlungen: Normlichtart *D65* (Tageslicht) oder *A* (Kunstlicht).
Die spektrale Farbvalenz $e(\lambda)$ für Spektralfarben konstanter Energie (der spektralen Strahlung vom Betrag 1) wird nach der folgenden Gleichung berechnet:

$$\boldsymbol{e}(\lambda) = \bar{\boldsymbol{x}}(\lambda)\boldsymbol{x} + \bar{\boldsymbol{y}}(\lambda)\boldsymbol{y} + \bar{\boldsymbol{z}}(\lambda)\boldsymbol{z}. \qquad (3.2.2-1)$$

Die Funktionen $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$ heißen "Normspektralwerte". Die Einheitsvektoren x, y, z sind die Normprimärvalenzen. Den Normspektralwerten sind für jede Wellenlänge bestimmte Zahlenwerte zugeordnet, die in DIN 5033 Teil 2 angegeben sind und für einen "Normalbeobachter" mit 2^o- oder 10^o-Gesichtsfeld gelten. Für zwei Wellenlängen $\lambda = 400$ nm und $\lambda = 635$ nm gilt z. B. nach DIN 5033 Teil 3:

$$e(\lambda = 400) = \bar{x}(400) \mathbf{x} + \bar{y}(400) \mathbf{y} + \bar{z}(400) \mathbf{z}$$

= 0,0143 \mathbf{x} + 0,0004 \mathbf{y} + 0,0679 \mathbf{z} (3.2.2-2)
$$e(\lambda = 635) = \bar{x}(635) \mathbf{x} + \bar{y}(635) \mathbf{y} + \bar{z}(635) \mathbf{z}$$

= 0,5419 \mathbf{x} + 0,2170 \mathbf{y} + 0,0000 \mathbf{z} (3.2.2-3)

Die Farbvalenz f einer Meßprobe berechnet sich als Summe aus allen Spektralvalenzen $S(\lambda)$ von $\lambda = \lambda_1 = 380$ nm bis $\lambda = \lambda_k = 760$ nm, die in der Regel unterschiedliche spektrale Strahlung als Funktion von λ besitzen:

$$f = S(\lambda_1) + S(\lambda_2) + \dots + S(\lambda_k).$$
(3.2.2-4)

Jede Spektralvalenz $S(\lambda_i)$ (i = 1, 2, ..., k) einer Meßprobe ergibt sich aus der entsprechenden Spektralvalenz $e(\lambda_i)$ für das energiegleiche Spektrum durch Multiplikation mit den spektralen Reflexionsfaktoren $R(\lambda_i)$ und der Strahlung $S(\lambda_i)$ der Normlichtart, für die die farbvalenzmetrische Auswertung erfolgen soll:

$$S(\lambda_i) = S(\lambda_i) R(\lambda_i) e(\lambda_i)$$

= $S(\lambda_i) R(\lambda_i) [\bar{x}(\lambda_i) x + \bar{y}(\lambda_i) y + \bar{z}(\lambda_i) z].$ (*i* = 1, 2, ..., *k*)
(3.2.2-5)

Durch Einsetzen von Gl. (3.3.2-5) in Gl. (3.3.2-4) ergibt sich für die Farbvalenz *f* der Meßprobe:

$$\boldsymbol{f} = [S(\lambda_1) R(\lambda_1) \bar{\boldsymbol{x}}(\lambda_1) + \dots + S(\lambda_k) R(\lambda_k) \bar{\boldsymbol{x}}(\lambda_k)] \boldsymbol{x}$$
(3.2.2-6)

+
$$[S(\lambda_1) R(\lambda_1) \overline{y}(\lambda_1) + ... + S(\lambda_k) R(\lambda_k) \overline{y}(\lambda_k)] \mathbf{y}$$
 (3.2.2-7)

+
$$[S(\lambda_1) R(\lambda_1) \overline{z}(\lambda_1) + \dots + S(\lambda_k) R(\lambda_k) \overline{z}(\lambda_k)] z$$
 (3.2.2–8)

Durch Koeffizientenvergleich mit der Gleichung der Farbvalenzf im Normvalenzsystem

$$\boldsymbol{f} = \boldsymbol{X}\boldsymbol{x} + \boldsymbol{Y}\boldsymbol{y} + \boldsymbol{Z}\boldsymbol{z} \tag{3.2.2-9}$$

erhält man:

$$X = S(\lambda_1) R(\lambda_1) \bar{x}(\lambda_1) + \dots + S(\lambda_k) R(\lambda_k) \bar{x}(\lambda_k)$$
(3.2.2-10)

$$Y = S(\lambda_1) R(\lambda_1) \bar{y}(\lambda_1) + \dots + S(\lambda_k) R(\lambda_k) \bar{y}(\lambda_k)$$
(3.2.2-11)

$$Z = S(\lambda_1) R(\lambda_1) \overline{z}(\lambda_1) + \dots + S(\lambda_k) R(\lambda_k) \overline{z}(\lambda_k)$$
(3.2.2-12)

Die Berechnung dieser Produktsummen zur Ermittlung der Normfarbwerte X, Y und Z wird heute meist mit einem PC durchgeführt, der gleichzeitig die fotometrische Ermittlung der Reflexions- oder Transmissionsfaktoren steuert. Die spektralen Strahlungen $S(\lambda_i)$ und die Normspektralwertfunktionen $\bar{x}(\lambda_i)$, $\bar{y}(\lambda_i)$ und $\bar{z}(\lambda_i)$ sind für die farbvalenzmetrische Auswertung im PC-Programm verfügbar. Die Kombination von PC und Spektrometer bildet ein *Farbmeßgerät nach den Spektralverfahren*.

Die zuvor erwähnten Produkte zwischen Normlichtart und den Normspektralwertfunktionen sind im Anhang für die Normlichtart *D65* und den 2^o-Normalbeobachter für Wellenlängenintervalle von 10 nm in Abschnitt 10.1.1 und für 20 nm in Abschnitt 10.1.2 tabelliert.

3.3 Dreibereichsverfahren für Normfarbwert-Ermittlung

Bei der Bestimmung der Normfarbwerte nach dem Dreibereichsverfahren muß die effektive Empfängerempfindlichkeit des Farbmeßgeräts möglichst genau an die drei Normspektralwertfunktionen $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$ angepaßt werden.

Bei der Bestimmung der Normfarbwerte nach dem Dreibereichsverfahren mit einem an die Normspektralwertfunktionen exakt angepaßten lichtelektrischen Empfänger der spektralen Empfindlichkeit $d(\lambda)$ ergeben sich die Normfarbwerte *X*, *Y* und *Z* nach folgender Gleichung:

$$X = \sum [R(\lambda) S(\lambda) \bar{x}(\lambda)]$$

$$= k_{x} \sum [R(\lambda) S(\lambda) d(\lambda) t_{x}(\lambda)]$$

$$Y = \sum [R(\lambda) S(\lambda) \bar{y}(\lambda)]$$

$$= k_{y} \sum [R(\lambda) S(\lambda) d(\lambda) t_{y}(\lambda)]$$

$$Z = \sum [R(\lambda) S(\lambda) \bar{z}(\lambda)]$$

$$= k_{z} \sum [R(\lambda) S(\lambda) d(\lambda) t_{z}(\lambda)]$$

(3.3-1)

Durch Vergleich der oberen und unteren Teile der Gln. (3.3–1) folgen für die spektralen Transmissionsfaktoren $t_x(\lambda)$, $t_y(\lambda)$ und $t_z(\lambda)$ von drei sogenannten "Farbwertmeßfiltern", mit denen der lichtelektrische Empfänger für die Be-

stimmung der Normfarbwerte nach dem Dreibereichsverfahren (nacheinander) abgedeckt werden muß:

$$t_{x}(\lambda) = \overline{x}(\lambda) / [k_{x} d(\lambda)]$$

$$t_{y}(\lambda) = \overline{y}(\lambda) / [k_{y} d(\lambda)]$$

$$t_{z}(\lambda) = \overline{z}(\lambda) / [k_{z} d(\lambda)]$$

(3.3-2)

Hierin sind k_x , k_y , k_z Konstanten, und $d(\lambda)$ ist die spektrale Empfindlichkeit des verwendeten lichtelektrischen Empfängers.

Bild 3_10 zeigt die spektrale Anpassung eines Dreibereichsfarbmeßgeräts an die Normspektralwertfunktionen. Mit einem solchen Farbmeßgerät werden insbesondere "Lichtfarben" gemessen, z. B. die Farben auf Farbmonitoren oder von Lampen.

3.4 Allgemeines zur Farbmessung

Prinzipiell besteht ein Farbmeßgerät aus einer Lichtquelle, einer Strahlenführung, einem Wellenlängen-Selektor, einem lichtempfindlichen Empfängerteil und in der Spektrometrie einem Rechner für die Berechnung der Normfarbwerte.

3.4.1 Lichtquellen

Als Lichtquellen werden meist Wolfram-Halogen-Lampen und für Spezialzwecke Xenon-Lampen verwendet, deren Strahlungsverteilung dem Tageslicht *D65* nahekommt (Strahlungsfunktion in DIN 5033). Die technisch aufwendige Xenon-Hochdrucklampe wird in der Regel nur dann eingesetzt, wenn die spektrale Strahlungsverteilung auch im ultravioletten Spektralbereich bestimmten Anforderungen genügen muß, z. B. bei der Messung optisch aufgehellter Materialien unter Tageslichtbedingungen. Beide Lampen-Typen erwärmen Proben bei längeren Meßzeiten und können thermochrome Farbverschiebungen verursachen.

In der modernen Geräteentwicklung hat auch die Xenon-Blitzlampe einen festen Platz erobert. Sie vermeidet wegen kurzer Belichtungszeiten thermochrome Effekte. Sie kann aber wegen hoher Lichtleistung fotochemische Übergangszustände auslösen, die zu einer kurzzeitigen Änderung der spektralen Absorptionscharakteristik führen.

3.4.2 Oberflächen und Reflexion

Das von einer Lichtquelle auf die Oberfläche auffallende Licht wird je nach Eigenschaften der Oberfläche unterschiedlich reflektiert. Wir betrachten einen unter 45° einfallenden Lichtstrahl. Der Einfallswinkel wird im Vergleich zur Oberflächen-Normalen (0°) gemessen.

Die in **Bild 3_11** dargestellte spiegelnde Oberfläche erzeugt eine Spielgelreflexion unter dem Spiegelwinkel -45° .

Die in **Bild 3_12** dargestellte matte Oberfläche erzeugt eine diffuse Reflexion gleichmäßig in alle Raumrichtungen.

In **Bild 3** 13 wird das unter 45° zur Probennormale einfallende Licht überwiegend diffus reflektiert mit einem etwas erhöhten Anteil in der Nähe des Spiegelwinkels – 45°. Man kann eine solche Probe als seidenmatte Probe bezeichnen.

In **Bild 3** 14 wird das unter 45° zur Probennormale einfallende Licht verstärkt in der Nähe des Spiegelwinkels – 45° reflektiert. Man kann eine solche Probe als glänzende Probe bezeichnen.

In **Bild 3** 15 wird das unter 45^o zur Probennormale einfallende Licht verstärkt

8311_8

in der Nähe des Lichteinfallwinkels 45[°] zur Lichtquelle reflektiert. Eine solche Probe heißt *retro-reflektierend*.

3.4.3 Optische Strahlenführung

Die aus der Lichtquelle austretende Strahlung wird in der Regel mit optischen Hilfseinrichtungen (Linsensystem, Lichtleitkabel, Hohlkugel, Spiegel) auf die Probe geführt und ebenso die die Probe verlassende Strahlung in Richtung auf den Wellenlängen-Selektor oder Empfänger. Die geometrische Art der Strahlenführung wird unter dem Begriff der Meßgeometrie zusammengefaßt. Man unterscheidet die Beleuchtungsseite der Probe und die Abstrahlungsseite, die beide in der Geometrie der Strahlenführung verschieden ausgeführt sein können:

Das von der Lichtquelle abgestrahlte Licht ergibt beim Auftreffen auf die Oberfläche der Probe:

- gerichtete Beleuchtung durch einen konisch geformten Strahl mit kleinem Öffnungswinkel (Lichtquelle nahezu punktförmig),
- gerichtete Beleuchtung durch einen kegelmantelförmigen Strahl (Lichtquelle ringförmig),
- diffuse Beleuchtung durch die mattweiße Innenwand einer Hohlkugel (Innenwand wird durch eine besondere Öffnung von der externen Lichtquelle beleuchtet),
- gerichtete Beleuchtung durch einen konisch oder ringförmigen Strahl mit großem Öffnungswinkel.

Das von der Probe abgestrahlte Licht wird:

- ausschnittsweise in einer Richtung konusförmig mit kleinem Öffnungswinkel ausgeblendet und gemessen,
- "vollständig" im Innern einer mattweißen Hohlkugel gesammelt und gemessen.

3.4.4 Meßgeometrien

Für übliche Meßgeometrien wurden besondere Bezeichnungen eingeführt (vgl. DIN 5033 "Farbmessung", Teil 7). Für eine gute Übereinstimmung von Farbmeß- und Beobachtungswerten sind vergleichbare Geometrien erforderlich.

Bild 3_16Meß- oder Beobachtungs-Geometrie gerichtet 8320_2, 8320_3 Meß- oder Beobachtungs-Geometrie $45^{\circ}/0^{\circ}$ (*oben links*) und $0^{\circ}/45^{\circ}$ (*oben rechts*) mit beleuchtender Lichtquelle und lichtelektrischem Empfänger (Meßkopf) bzw. Auge

Bild 3_16 zeigt die vorteilhaften Meß- oder Beobachtungs-Geometrien $45^{\circ}/0^{\circ}$ sowie die Umkehrung $0^{\circ}/45^{\circ}$. Für strukturierte Textil-Proben ändert sich das visuelle Aussehen mit der Richtung der Kettfäden. Hier ist eine diffuse Beleuchtung angebracht.

Bild 3_17Meß- oder Beobachtungs-

Proben-Oberfläche

Licht

Meßkopf

Geometrie Kugel 8320_4 bis 8320_6 Meß- oder Beobachtungs-Geometrie diffus/0° (*oben links*) und 0°/diffus (*oben rechts*) mit beleuchtender Lichtquelle und lichtelektrischem Empfänger. Für glänzende, strukturierte Proben ist eine Geometrie 8° /diffus mit oder ohne "Glanzfalle" vorteilhaft (*unten links*).

und 0°/diffus (*oben rechts*) mit beleuchtender Lichtquelle und lichtelektrischem Empfänger. Für glänzende, strukturierte Proben ist eine Geometrie 8°/diffus mit oder ohne "Glanzfalle" vorteilhaft (*unten links*).

Das "Glanzlicht" kann durch einen geeigneten schwarzen Hohlraum vollständig absorbiert werden, oder es kann durch einen Reflektor entsprechend der diffusen Kugelwand refektiert werden, so daß es in die Messung mit eingeht.

Zum Schluß sei noch die *Gonio-Geometrie* erwähnt, die z. B. eine gerichtete Beleuchtung unter 45^o zur Probennormalen enthält und eine gerichtete Messung des von Proben reflektierten Lichts unter mehreren (z. B. drei) Winkeln erfordert.

Einfluß der Meßgeometrie auf die Farbmessung:

Bei glänzenden Proben bleibt der Spiegelreflex der Oberfläche unter $45^{\circ}/0^{\circ}$ -Meßgeometrie weitgehend unberücksichtigt. Bei diffuser Meßgeometrie $8^{\circ}/$ diffus ist er jedoch auf der Abstrahlungsseite enthalten, wenn nicht eine Öffnung der Kugelwand in Spiegelrichtung (-8°) den Oberflächenreflex austreten läßt bzw. absorbiert ("Glanzfalle"). Diese Ausblendung funktioniert vollständig nur bei hochglänzenden, ebenen Proben, nicht bei seidenglänzenden, bei denen der Oberflächenreflex geometrisch zu breit verteilt ist.

Das von der Probe abgestrahlte Licht muß farbmetrisch richtig analysiert werden. Das kann in einem Schritt geschehen, wenn an die Normspektralwertfunktionen angepaßte Farbfilter als Wellenlängen-Selektoren eingesetzt sind, vgl. Bild 3_10 (Dreibereichsverfahren).

Wellenlängen-Selektor:

Beim Verfahren der Spektrometrie werden die spektralen Eigenschaften des von der Probe abgestrahlten Lichts als Funktion der Wellenlänge ermittelt. Hierzu wird die Probe monochromatisch bestrahlt und der Proben-Reflexionsfaktor im Vergleich zu einem Weiß-Standard ermittelt. Die Umwandlung der spektralen Reflexionsfaktoren in Normfarbwerte wird in einem zweiten Schritt vollzogen.

Der Wellenlängen-Selektor ist ein Monochromator mit Prisma oder Gitter oder ein Satz Schmalbandfilter mit geeignet gewählten Schwerpunktwellenlängen. Er sorgt dafür, daß bei der fotometrischen Messung nur ein eng begrenztes Spektralgebiet des sichtbaren Lichts bei einer gegebenen Schwerpunktwellenlänge berücksichtigt wird.

Messungen werden in bestimmten Schrittweiten der Wellenlänge durchgeführt, wobei die Schrittweite und die Durchlaßbreite (= optische Bandbreite) aneinander angepaßt sein müssen. Übliche Werte sind 10 nm Schrittweite und Bandbreite im Bereich von 380 nm bis 720 nm (evtl. verkürzt auf 400 nm bis 700 nm). Schrittweiten von 20 nm werden oft für Farbrezepturberechnungen gewählt. Zur Bestimmung exakter Farbmaßzahlen ist 20 nm Schrittweite im allgemeinen zu grob.

Bild 3_18Messung spektraler Reflexionsfaktor 8320_7, 8320_8 Prinzip eines Spektrometers zur Bestimmung des spektralen Reflexionsfaktors $R(\lambda)$ mit Lichtquelle, Monochromator und Empfänger (Meßkopf) für die Meß-Geometrien $45^{\text{O}}/0^{\text{O}}$ (*oben links*) und $0^{\text{O}}/45^{\text{O}}$ (*oben rechts*)

Bild 3_18 zeigt das Prinzip eines Spektralfotometers mit Lichtquelle, Monochromator, Probe und lichtelektrischem Empfänger (Meßkopf). Zur Justierung ist ein Weiß-Standard (Reflexionsfaktor angenähert 1) notwendig und ein Schwarz-Standard (Reflexionsfaktor angenähert 0) vorteilhaft.

Durch geeignete optische Anordnungen, z. B. einem rotierenden Spiegel, kann das beleuchtende Licht abwechselnd auf Probe und Weiß-Standard fallen und so ein ständiger mechanischer Austausch von Probe und Weiß-Standard vermieden werden.

Die Abtastung der Meß-Wellenlängen geschieht in klassischen Spektrometern durch Drehen von Prisma oder Gitter, so daß die Schwerpunktwellenlängen zeitlich nacheinander an einem festgehaltenen Spalt erscheinen, der die unerwünschten Spektralbereiche abschattet. Hinter dem Spalt befindet sich ein Empfänger, der die fotometrische Messung vornimmt.

In neuerer Technologie wird in verschiedenen Spektrometern das von einem Gitter entworfene Spektrum durch eine Vielzahl nebeneinander sitzender Empfänger (eine Art "Spaltreihe") gleichzeitig gemessen. Der Monochromator hat keine beweglichen Teile mehr und verfügt über hohe Stabilität.

Mit Farbmeßgeräten wird vorwiegend der spektrale Reflexionsfaktor gemessen. Einige Farbmeßgeräte erlauben, die gemessenen Farben z. B. für den 2^o-Beobachter und die Normlichtart D65 auf dem Farbmonitor zu visualisieren. Oft lassen sich die berechneten Normfarbwerte von Vorlage und Nachfärbung auf dem Farbmonitor darstellen.

Als besonders geeignet hierzu erweisen sich Rechner-Betriebssysteme mit Display-PostScript. Diese Betriebssysteme können die Farben innerhalb vorgegebener Toleranzen am Bildschirm darstellen und das Farbmonitorbild auch auf einem PostScript-Farbdrucker je nach CIE-ISO-Güteklasse des Druckers innerhalb vorgegebener Toleranzen ausgeben.

In Kapitel 8 "PostScript und CIE-Farbräume" ab Seite 207 werden die Möglichkeiten zur Visualisierung von Farbe innerhalb vorgegebener Toleranzen auf dem Farbmonitor und mit Farbdrucktechniken dargestellt und diskutiert.

4 Besondere Eigenschaften des Farbensehens

4.1 Farbstufung leuchtdichtegleicher Farben

Wir haben experimentell gleichabständige Buntheitsreihen für Farben gleicher Leuchtdichte L, d. h. mit konstantem Hellbezugswert Y oder mit konstanter Helligkeit L^* , in verschiedenen Richtungen des Farbenraums erzeugt. Der erzeugte Farbbereich geht in der Buntheit zum Teil um 50 % über den durch Farbmuster in Farbsystemen vorhandenen Bereich hinaus.

Bild 4_1 Farbstufung BuntheitsreiheT-D65-P 8760_1 Farb-Stufung der Reihen Türkis T – GrauD65 – Purpurrot P; gleiche Farbabständeder Farbstufen zwischen T - D65 undD65 - P

Das **Bild 4_1** zeigt eine Farbreihe zwischen einem sehr bunten Türkis *T* über Unbunt *D65* (Tageslicht) bis zu einem sehr bunten Purpurrot *P*, die angenähert gleichabständig gestuft ist. Die experimentelle Situation ist oben links im Bild angegeben. In einer weißen Umgebung befand sich ein graues quadratisches Umfeld. In diesem grauen Umfeld waren zwei Endfarben vorgegeben, hier Türkis *T* und Purpurrot *P*. Im unteren kreisförmigen Feld konnten kontinuierlich Farben gleicher Leuchtdichte zwischen den beiden Endfarben *T* und *P* erzeugt werden.

Dem Beobachter wurde eine feste Stufenskala zwischen 0, 5 und 10 für *T*, *D65* und *P* vorgegeben. Durch einen Zufallsgenerator wurden im Experiment Ziffern zwischen 0 und 10 erzeugt, bei 1 mußte der Beobachter ein buntes Türkis einstellen, bei 7 ein mittelbuntes Purpur, bei 5 Unbunt *D65* usw. Das Ziel der Herstellung einer visuell gleichabständigen Farbstufung einerseits zwischen *T* und *D65* und andererseits zwischen *D65* und *P* wurde dem Beobachter ausführlich erläutert.

Bild 4_1 zeigt im Hauptteil die den Ziffern 0 bis 10 zugeordneten Farben der Farbreihe T - D65 - P schematisch. Entsprechende Experimente wurden mit verschiedenen gegenfarbigen Farbreihen durchgeführt. Die Ergebnisse sind in einem BAM-Forschungsbericht (*Richter*, 1985) dargestellt.

Bild 4_2Farbstufung BuntheitsreiheV-D65-Y 8760_2 Farb-Stufung der Reihen Violettblau V-Grau D65 – Gelb Y; gleiche Farbabständeder Farbstufen zwischen V - D65 undD65 - Y

Bild 4_3 Farbstufung BuntheitsreihenT-D65 und D65-P 8760_5 Farb-Stufung der Reihen Türkis T – GrauD65 – Purpurrot P; Buntabstand 40 % fürT - D65 und 60 % für D65 - P

Bild 4_3 zeigt die Farbskalierung als Funktion der farbvalenzmetrischen Koordinate a = x / y, das heißt als Funktion des Quotienten aus den Normfarbwertanteilen x und y der Farbmessung.

Die geometrischen Abstände T - D65 und D65 - P verhalten sich im Bild etwa wie 1 : 1,5, d. h. entsprechend der experimentellen Aussage der Beobachter, daß die Buntheit der Endfarbe Purpurrot P um den Faktor 1,5 größer ist als die Buntheit der Endfarbe Türkis T. Deshalb wurde auch die Ordinate im Verhältnis 1 : 1,5 für Türkis und Purpurrot gewichtet.

Bild 4_4Farbstufung undFarbartdifferenz 8760_6 Farb-Stufung der Reihen Türkis T - GrauD65 - Purpurrot P; konstante Werte Δa mit Farbmeßwerten a = x / y

Bild 4_4 zeigt die Ergebnisse von Experimenten in *T*–*P*-Richtung, wobei jetzt der geometrische Abstand Δa zwischen zwei benachbarten Farbstufen dividiert durch ihre relative Buntheit (1 für *T* – *D*65 und 1,5 für *D*65 – *P*) als Funktion der Koordinate a = x / y dargestellt ist. Gleichen geometrischen Abständen entsprechen gleiche Buntheitsunterschiede.

Die Beschreibung gleicher Buntheitsunterschiede durch gleiche geometrische Unterschiede einer farbvalenzmetrischen Größe (hier a = x / y) ist besonders einfach gelungen. Die Darstellung der Ergebnisse für andere Buntheitsreihen ist in einem BAM-Forschungbericht (*Richter*, 1985) beschrieben.

4.2 Farbschwellen leuchtdichtegleicher Farben

Entlang der gleichen Farbreihen, z. B. T - D65 - P, wurden gerade erkennbare Farbschwellen, das sind gerade erkennbare Farbunterschiede, ermittelt. Zunächst wurde angenommen, daß den Farbschwellen jeweils konstante (z. B. alle etwa um den Faktor 30 kleinere) Δa entsprechen. Die Ergebnisse sind jedoch überraschend anders.

Bild 4_5 zeigt die experimentelle Situation. In einer weißen Umgebung befand sich ein graues quadratisches Umfeld. In diesem grauen Umfeld waren zwei

Endfarben vorgegeben, hier Türkis T und Purpurrot P. Im unteren kreisförmigen Feld konnten kontinuierlich alle Farben zwischen den beiden Endfarben Tund P erzeugt und halbkreisförmig gleiche Mengen von T und P auf diese Farbe projiziert werden. In der Regel liegt die für eine Farbschwelle notwendige projizierte Menge bei 1 % der Endfarben.

Der Beobachter mußte nun soviel Zusatzfarbe auf die Basisfarbe projizieren, bis ein Unterschied zwischen beiden Halbfeldern gerade erkennbar war. In diesem Fall befindet sich der Beobachter an der Farbschwelle (Sichtbarkeitsschwelle eines Farbunterschieds).

Bild 4_5 zeigt die geometrischen Abstände Δa für Farbschwellen als Funktion der farbvalenzmetrischen Koordinate a = x / y, das heißt als Funktion des Quotienten aus den Normfarbwertanteilen x und y der Farbmessung. Die geometrischen Abstände für Farbschwellen sind nicht konstant, wie wir aus den Experimenten für Farbskalierung erwartet haben, sondern ändern sich im Verhältnis 1 zu 3. Sie sind bei Unbunt *D65* am kleinsten und nehmen linear als Funktion des Koordinatenabstands von Unbunt sowohl in Richtung Türkis *T* als auch in Richtung Purpurrot *P* zu.

Bei Unbunt entsprechen 30 Schwellen einer Buntheitsstufe, und bei Purpurrot P und Türkis T sind es jeweils nur zehn Farbschwellen.

Erste Deutungen dieser BAM-Forschungsergebnisse, die inzwischen von *Krauskopf* (1991) voll bestätigt wurden und die im Prinzip schon auf den bekannten unterschiedlichen Metriken zur Beschreibung von *MacAdam*-Ellipsen und Farbordnungssystemen beruhen, erzwingen die Annahme von *zwei* Farbsehmechanismen in Rot–Grün-Richtung.

Bild 4_6 zeigt die relativen Empfindlichkeiten dieser beiden Mechanismen in Rot–Grün-Richtung. In jedem Teilbereich bestimmt jeweils ein anderer, nämlich der empfindlichste Farbsehmechanismus, die Erkennbarkeit der Farbschwelle. Zur Festlegung der großen Farbstufen arbeiten beide Mechanismen zusammen, das heißt, hier muß die Summe der Signale beider Mechanismen gebildet werden. Das Übergangsgebiet ist bisher nicht erforscht.

Jedenfalls erzwingen die BAM-Forschungsergebnisse zwei verschiedene Farbenräume und zusätzlich Übergänge zur Beschreibung der Farbschwellen und der Farbstufung. Die Farbschwellen spielen bei der Festlegung von kleinen Farbtoleranzen eine größere Rolle, die gleichabständige Stufung größerer Farbunterschiede ist eine wesentliche Grundlage der Farbwiedergabe-Kennzeichnung. Farbmuster in Farbsystemen besitzen meist Abstände um 30 Farbschwellen (= zehn CIELAB-Einheiten), z. B. die Farbmuster im Farbsystem RAL-Design (1993), das auf dem Farbenraum CIELAB 1976 beruht.

4.3 Farbstufung, Farbschwellen und Leuchtdichte

Die Experimente über Farbstufung und Farbschwellen für leuchtdichtegleiche Farben, z. B. der Reihe T - D65 - P in den Abschnitten 4.1 und 4.2, müssen durch Experimente über Stufung und Schwellen als Funktion der Leuchtdichte L erweitert werden. Zur Darstellung kann anstelle der Leuchtdichte L auch der Hellbezugswert Y benutzt werden, der eine relative Leuchtdichte darstellt und gewöhnlich für Weiß auf 100 normiert wird. Es gilt:

 $Y = 100 L / L_{w}$

wobei L die Infeld-Leuchtdichte und L_w die Leuchtdichte des weißen Umfelds (äußerer weißer Rahmen in experimenteller Situation, siehe Bild 4_7) sind.

Bild 4_7 zeigt die gleichabständige Farbstufung für eine Infeldfarbreihe im Bereich N - D65 und D65 - W.

Bild 4_8 Helligkeitsstufung und
Leuchtdichtedifferenz 8761_2 Leuchtdichteunterschied ΔL von gleichabständigen Graumustern der Leuchtdichten
L skaliert zwischen Schwarz N und
Weiß W; Parameter: fünf Umfeld-
Leuchtdichten $L_{\rm u}$

Bild 4_8 zeigt gemessene Infeldleuchtdichteunterschiede ΔL als Funktion der Infeldleuchtdichte L in doppelt-logarithmischer Darstellung. Als Parameter ist die Umfeldleuchtdichte angegeben. Die schwarz-weiße Kurve gilt für eine mittlere Umfeldleuchtdichte $L_u = 100 \text{ cd} / \text{m}^2$ für das graue Umfeld u. Der Leuchtdichte $L_u = 100 \text{ cd} / \text{m}^2$ entspricht einer mittleren Beleuchtungsstärke von $5 \cdot \pi \cdot 100 \text{ lux} \approx 1500 \text{ lux}$. Der Faktor fünf gilt für ein mittleres Grau mit dem Reflexionsfaktor 0,2.

Bild 4_9 zeigt den Infeld-Hellbezugswertunterschied ΔY (proportional ΔL) als Funktion des Infeld-Hellbezugswerts *Y* für einen Ausschnitt aus der Graureihe. Die Skalenwerte deuten an, daß die Schwelle konstant 1 % des Infeldhellbezugswerts *Y* erfordert. Die Steigung vom Betrag eins ist durch das sogenannte *Weber-Fechner*sche-Gesetz $\Delta Y / Y$ bzw. $\Delta L / L =$ konst. festgelegt.

Bild 4_10 Unbuntschwellen und
Leuchtdichtedifferenz 8761_4 Infeld-Leuchtdichte-Unterschied ΔL von
Farbschwellen auf Graureihe: Übereinstimmung mit dem Gesetz von Weber-Fechner
für große L und alle L_u

Bild 4_10 zeigt eine erweiterte Darstellung für sehr dunkle und sehr helle Farben über mehr als sechs logarithmische Leuchtdichte-Einheiten (im Bild 4_9 ist nur eine Einheit dargestellt). Der Parameter Umfeldleuchtdichte beschreibt insbesondere eine große Änderung der Schwarzschwelle mit der Umfeldleuchtdichte. In Richtung kleine Infeldleuchtdichten L wird für fast schwarz erscheinende Infeldfarben eine konstante Schwarzschwelle ΔL_n erreicht. Leuchtdichteunterschiede kleiner als ΔL_n sind nicht mehr sichtbar.

Ein Vergleich von Bild 4_8 und Bild 4_10 zeigt auch hier, daß der Leuchtdichteunterschied ΔL nicht proportional ist für gleichabständig gestufte Graureihen und für Leuchtdichteschwellen entlang dieser gleichen Graureihe. Die unterschiedliche Steigung in Bild 4_8 und Bild 4_10 ist ein Maß für diese Aussage. Entsprechende Ergebnisse haben wir für leuchtdichtegleiche Buntheitsreihen in Bild 4_4 und Bild 4_5 entlang der Reihe T - D65 - P kennengelernt. Die Unterschiede sind auch entlang der Graureihe nur durch zwei visuelle Prozesse in Schwarz–Weiß-Richtung erklärbar, siehe *Richter* (1988).

4.4 CIELAB-Farben in Farbdokumenten

Die schnelle Entwicklung der Speicher-, Rechner- und Kommunikationstechnik erfordert die Festlegung von 16 Millionen Farben für den Dokumenten- und Bildaustausch auf der Basis von Farbmessungen. Die Schnittstellen, insbesondere zwischen dem zentralen Farbspeicher und den verschiedenen Ein- und Ausgabemöglichkeiten der Farbbildspeicherdaten, gewinnen zunehmende Bedeutung.

Bild 4_11 Schnittstellen im Bereich Bildverarbeitung 8690_11 Schnittstellen im Bereich Bildverarbeitung–Druck; Farbfilmvorlagen, Farbspeicher, Farbreproduktion

Bild 4_11 zeigt Schnittstellen im Bereich Bildverarbeitung–Druck: Farbfilmvorlagen, Farbspeicher, Farbreproduktion. Für verschiedene Ein- und Ausgabegeräte (Farbscanner, Farbmonitore, Farbdrucker) werden die Gerätefarben durch geeignete Transformationen zwischen CIE-Farbmeßsystem und Geräte-Farbraum angenähert. Gerätehersteller, z. B. von Farbmonitoren und Farbdruckern, sollen durch geeignete Hard- und Software-Komponenten die *geräteunabhängige* Erzeugung von Farbe für jeden Benutzer bei Angabe der CIELAB-Werte ermöglichen.

Auf der Softwareseite wurden kürzlich Prinzipien zur geräteunabhängigen Codierung von Farben auf der Basis von Farbmessungen und dem Farbenraum CIELAB 1976 in einem "PostScript Language Reference Manual" von der Industrie (*Adobe-Systems 1990*) veröffentlicht. Die ISO wird wesentliche Teile dieses Industriestandards in ihren Empfehlungen berücksichtigen. Die Farbbeschreibungen werden in einem ISO-Komitee TOSCA (*Text and Office Systems Colour Architecture*) definiert.

Bei Festlegung eines Farbwerttripels L^* , a^* , b^* (Helligkeit, Rot–Grün- und Gelb–Blau-Buntheit) im Farbenraum CIELAB in einem Rechnerprogramm sollen genau diese Farben am Bildschirm, auf dem Farbdrucker und im Offsetdruck entstehen.

Im idealen Fall sollten sich diese Ausgabe-Farben visuell nicht von den im Dokument definierten Sollfarben unterscheiden. Eventuelle Abweichungen können durch die Farbabstandsformel CIELAB auf Einhaltung der Toleranzen meßtechnisch überprüft werden. Unterschiedliche Toleranzgrenzen von z. B. drei und zehn CIELAB-Einheiten definieren verschiedene Qualitätsstufen.

Durch Benutzung von 17 internationalen CIE-Testfarben und Messung der entsprechenden Ausgabefarben auf einem Ausgabegerät können mittlere Farbabweichungen ermittelt werden. Solche Verfahren führen zu einem mittleren Farbwiedergabe-Index. Das Verfahren ist in DIN 6169 "Farbwiedergabe" für die Bereiche Beleuchtungstechnik, Farbfotografie, Mehrfarbendruck, Farbfernsehen und Kombinationen beschrieben. Farbmetrische Eigenschaften der Grundfarben und Farbräume des Standard-Farbmonitors und des Standard-Offsetdrucks wurden früher (*Richter*, 1985) veröffentlicht. Das Verfahren zur Kennzeichnung der Farbwiedergabe wird in der BAM auch auf Farbkopierer und Farbfaxgeräte angewandt, wo die Abweichung zwischen Original und Farbkopie die wichtigste Qualitätseigenschaft ist.

4.5 CIELAB-Farbenraum und Farbarten (a', b')

Die Farben im Farbspeicher können durch die auf Farbmessung beruhenden Farbkoordinaten L^* , a^* und b^* des Farbenraums CIELAB beschrieben werden.

 Farbenraum CIELAB 1976, Farbwerte, -merkmale und -arten (a', b')

 Normfarbwerte X, Y, Z -> Farbmerkmale L*, a*, b*

 Helligkeit
 $L^* = 116 (Y/Y_n)^{1/3} - 16$

 RG-Buntheit
 $a^* = 500 [(X/X_n)^{1/3} - (Y/Y_n)^{1/3}] = 500 [a' - a'_n] Y^{1/3}$

 JB-Buntheit
 $b^* = 200 [(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}] = 500 [b' - b'_n] Y^{1/3}$

 Farbmerkmale
 L^* , a^* , $b^* ->$ Normfarbwerte X, Y, Z

 Normfarbwerte X = X_n [(L* + 16) / 116 + a*/500]^3
 $Y = Y_n [(L* + 16) / 116]^3$

 Z = Z_n [(L* + 16) / 116 - b*/200]^3
 $Z = Z_n [(L* + 16) / 116 - b*/200]^3$

 Farbarten für CIELAB 1976, LABHNU 1977, LABHNU1 1979

 CIELAB 1976, 2°
 $a' = 0,2191 (x/y)^{1/3}$ $b' = -0,08376 (z/y)^{1/3}$

 LABHNU 1977
 $a' = (x/y + 1/6)^{1/3} / 4$ $b' = -(z/y + 1/6)^{1/3} / 12$

 LABHNU1 1979
 $a' = (x/y + 1/6)^{2/3} / 15$ $b' = -(z/y + 1/6)^{1/3} / 12$

 LABHNU2 1979
 $a' = 0,2193 (x_{10} / y_{10})^{1/3}$ $b' = -0,08417 (z_{10} / y_{10})^{1/3}$

 Farbart-Konstanten
 $a_2 = 500 (1/X_n)^{1/3} = 0,2191$ $b_2 = -200 (1/Z_n)^{1/3} = -0,08376$

Bild 4_12 Farbenräume, Farbwerte, -merkmale und -arten 8190_3 Definition der Farbmerkmale Helligkeit L^* , (Rot–Grün-) RG-Buntheit a^* und (Gelb–Blau-) JB-Buntheit b^* in den Farbenräumen:

• CIELAB 1976, 2° und 10° • LABHNU 1977, • LABHNU1/2 1979.

Zuordnung von Farbartdiagrammen (*a*', *b*'), die aus x / y und z / y berechnet werden.

Bild 4_12 zeigt die Definition der Farbmerkmale Helligkeit L^* , (Rot–Grün-) *RG*-Buntheit a^* und (Gelb–Blau-) *JB*-Buntheit b^* im Farbenraum CIELAB 1976. Dem Farbenraum CIELAB für *D65* kann ein Farbartdiagramm (a', b') zugeordnet werden. Weiter sind kleinere Modifikationen von CIELAB (Farbenräume LABHNU, *Richter* 1980) angegeben, die von größerer theoretischer und praktischer Bedeutung sind. Die lineare Koordinate a = x / y, die in der linearen Koordinate a' des Farbenraums LABHNU1 1979 enthalten ist, wurde schon in Bild 4_4 und Bild 4_5 auf Seite 85 benutzt.

Bild 4_12 zeigt, daß man aus dem Farbenraum CIELAB 1976 für Normlichtart *D65* (Standardweiß) ein vom Hellbezugswert *Y* unabhängiges Farbartdiagramm (*a*', *b*') ableiten kann. Dieses Farbartdiagramm besitzt wie die Normfarbtafel einen Spektralfarbenzug, denn seine Koordinaten *a*' und *b*' hängen nur von den Normfarbwertanteilen *x*, *y* und z = 1 - x - y ab.

Das Farbartdiagramm (a', b') ist mit der Farbtafel (u', v') des Farbenraums CIELUV 1976 vergleichbar, die meist im Farbfernsehen verwendet wird. Ein Vorteil des Farbartdiagramms (a', b') im Vergleich zur Farbtafel (u', v')besteht z. B. darin, daß Farben gleichen Bunttons nahezu auf Geraden und Farben gleicher Buntheit besser auf Kreisen um Unbunt liegen. In diesem Sinne ist das Farbartdiagramm (a', b') besser an das visuelle System angepaßt.

4.6 Farbstufung im Farbartdiagramm (*a*', *b*')

4.6.1 Farbstufung im OSA-Farbsystem

Die gleichabständige Farbstufung größerer Buntheits- und Helligkeitsdifferenzen um zehn CIELAB-Einheiten wird durch Farbmuster im *OSA*-Farbsystem (*OSA* = *Optical Society of America*) veranschaulicht.

Bild 4_13 zeigt die gleichabständigen Farbmuster des *OSA*-Farbsystems in der Normfarbtafel (x_{10} , y_{10}). Gleichen Buntheitsunterschieden (Farbabstände bei gleicher Helligkeit) entsprechen sehr unterschiedliche geometrische Abstände.

Der geometrische Abstand in der Normfarbtafel ist daher nicht zur Festlegung von Buntheitsunterschieden oder Farbtoleranzen verwendbar.

Bild 4_14*OSA*-Farbmuster, Farbartdiagramme 8220_2 bis 8220_6 Farben des *OSA*-Farbsystems für die mittlere Helligkeit $L_{OSA}^* = 0$ in Farbartdiagrammen (a_{10}, b_{10}) bzw. (a'_{10}, b'_{10}) für: • LAB 1977 (oben links), • CIELAB 1976 (oben rechts),

- LABHNU 1977 (Mitte links),
- LABHNU1 1979 (Mitte rechts),
- LABHNU2 1979 (unten links)

Bild 4_14 zeigt *oben links* Farben des *OSA*-Farbsystems in einer linearen Farbtafel (a_{10} , b_{10}) des Farbenraums LAB 1977 und anschließend in vier Farbartdiagrammen (nichtlineare Farbtafeln). *Besondere* theoretische Bedeutung besitzt das gleichabständige Farbartdiagramm (a'_{10} , b'_{10}) des Farbenraums LABHNU1 1979 (*Mitte rechts*) mit einer linearen Koordinate a'_{10} und einer kubischen Koordinate b'_{10} :

$$a'_{10} = (x_{10}/y_{10} + 1)/15 = (a_{10} + 1)/15$$

 $b'_{10} = -(z_{10}/y_{10} + 1/6)^{1/3}/12.$

Die visuell gleichabständigen Farben liegen hier und in den vier anderen Farbartdiagrammen (a'_{10}, b'_{10}) angenähert auf einem regelmäßigen Gitter. Eine *lineare* Koordinate $a = x / y \approx a'$ wurde bereits in Bild 4_4 auf Seite 85 zur Beschreibung der Rot-Grün-Buntheitsstufung verwendet.

Bild 4_15*OSA***-Farbmuster und Helligkeit** 8210_5, 8230_5 Farben des *OSA*-Farbsystems für die Helligkeit $L_{OSA}^* = -4$ (*links*) und 4 (*rechts*) im Farbartdiagramm (a'_{10} , b'_{10}) von LABHNU1 1979

Bild 4_15 zeigt Farben des *OSA*-Farbsystems für die Helligkeit $L_{OSA}^* = -4$ (entspricht $L_{CIELAB}^* = 20$, *links*) und 4 (entspricht $L_{CIELAB}^* = 80$, *rechts*) im Farbartdiagramm (a'_{10} , b'_{10}) von LABHNU1 1979.

Für die Helligkeitsstufen $L^* = -4$ und $L^* = 4$ ist der Gitterabstand im Farbartdiagramm (*a'*, *b'*) größer bzw. kleiner als für $L^* = 0$. Nach den Formeln für die Buntheiten *a** und *b** in Bild 4_12 auf Seite 91 nimmt der Abstand proportional zur Kubikwurzel aus dem Hellbezugswert (*proportional Y*^{1/3}) ab.

4.6.2 Farbstufung im Munsell-Farbsystem

Die gleichabständige Farbstufung größerer Buntheits- und Helligkeitsdifferenzen um zehn CIELAB-Einheiten wird zusätzlich durch Farbmuster im *Munsell*-Farbsystem (neben dem *OSA*-Farbsystem) dargestellt.

Bild 4_16Munsell-Farbmuster undHelligkeit8110_1, 8120_1, 8130_1Farben des Munsell-Farbsystems fürdie Helligkeiten Munsell-Value 2, 5und 8 in der Normfarbtafel (x, y)

Bild 4_16 zeigt Farben des *Munsell*-Farbsystems für *Value* 2, 5 und 8 (entspricht $L_{CIELAB}^* = 20, 50, 80$) in der Normfarbtafel (*x*, *y*). Die ausgefärbten Muster sind durch offene Kreise dargestellt. Die gefüllten Kreise gehören zu extrapolierten (theoretischen) Farben, für die eine Musterherstellung in der gewählten Technik nicht möglich war und die *nicht* visuell ermittelt wurden.

Bild 4_17*Munsell*-Farbmuster, Farbartdiagramme 8120_2, 8120_3, 8120_5 Farben des *Munsell*-Farbsystems für die mittlere Helligkeit V = 5 (Value) in der Farbtafel (*a*, *b*) bzw. den Farbartdiagrammen (*a'*, *b'*) für:

- LAB 1977 (oben links),
- CIELAB 1976 (oben rechts),
- LABHNU1 1979 (unten links),

Bild 4_17 zeigt Farben des *Munsell*-Farbsystems für die mittlere Helligkeit V = 5 (Value) in der Farbtafel (*a*, *b*) des Farbenraums LAB 1977 (*oben links*) sowie in den Farbartdiagrammen (*a*', *b*'), die zu den Farbenräumen CIELAB 1976 (*oben rechts*) und LABHNU1 1979 (*unten links*) gehören.

Bild 4_18*Munsell*-Farbmuster und Helligkeit $8110_5, 8130_5$ Farben des *Munsell*-Farbsystems für die Helligkeit V = 2 (*links*) und V = 8 (*rechts*) in Farbartdiagrammen (a', b') des Farbenraums LABHNU1 1979

Bild 4_18 zeigt Farben des *Munsell*-Farbsystems für die Helligkeit V = 2 (*links*) und V = 8 (*rechts*) in Farbartdiagrammen (*a*', *b*') des Farbenraums LABHNU1 1979. Die Helligkeiten V = 2 und 8 entsprechen den Helligkeiten $L^*_{\text{CIELAB}} = 20$ und 80.

Wir haben in einem umfangreichen Forschungsprogramm (*Richter*, 1985) Skalierungsexperimente über Buntheit und Helligkeit in verschiedenen Richtungen des Farbenraums durchgeführt. In Rot-Grün-Richtung (*a*' variabel, *b*' = const.) konnten wir zeigen, daß für gleich helle Farben eine *lineare* Koordinate a = x / y zur Beschreibung der Experimente gut geeignet ist. Für gleiche Buntheitsunterschiede sind daher die Differenzen Δa konstant. Für die ausgefärbten Muster des *Munsell*-Farbsystems entspricht diese Behauptung den Darstellungen von Bild 4_17 (*unten links*) und Bild 4_18 (*links und rechts*). Diese Experimente zeigten, daß die Extrapolationen des Munsell-Farbsystems für gesättigte grüne Farben in Rot–Grün-Richtung zu hohe Buntheiten ergeben.

4.7 Farbschwellen im Farbartdiagramm (a'', b'')

Bei Bestimmung von Farbschwellen — das sind gerade erkennbare visuelle Unterschiede — entlang der Farbreihe Rot – D65 – Grün ergab sich jedoch überraschend eine wesentliche Zunahme von Δa als Funktion des Farbartabstands von Unbunt, vgl. Bild 4_5 auf Seite 85. Sowohl von Unbunt nach Rot als auch von Unbunt nach Grün nimmt der Farbartabstand um etwa den Faktor 2 bis 3 zu. Diese überraschenden experimentellen Ergebnisse wurden inzwischen von *Krauskopf* und *Gegenfurtner* (1991) bestätigt.

Die Ellipsengröße von Farbschwellen-Experimenten im Farbartdiagramm (a', b') nimmt vom unbunten Mittelpunkt *D65* radial nach außen um etwa den Faktor 2 zu. Zur Darstellung von *Farbschwellen* muß daher ein weiteres Farbartdiagramm mit den Koordinaten (a'', b'') verwendet werden, deren Koordinaten zusätzlich den radialen Abstand von Unbunt enthalten.

4.7.1 Farbschwellen-Experimente von MacAdam

Bild 4_19 Farbschwellen *MacAdam* 8140_1 *MacAdam*-Ellipsen (*MacAdam* 1942) in der Normfarbtafel (*x*, *y*), vergrößert um einen Faktor 20

Bild 4_19 zeigt die *MacAdam*-Ellipsen (*MacAdam* 1942) in der Normfarbtafel (*x*, *y*), vergrößert um einen Faktor 20.

Die Schwellen-Ellipsen von *MacAdam* wurden mit *Lichtfarben* in weißem Umfeld bei einer *doppelten* Infeld- im Vergleich zur Umfeldleuchtdichte gemessen. Außerdem wurden nicht direkt die Unterschiede der beiden Halbfelder beurteilt, sondern aus der meßtechnischen Abweichung bei *Gleichheitseinstel*- *lung* der beiden Halbfelder wurden die Schwellen-Ellipsen rechnerisch ermittelt. Insbesondere die hohe Infeld- im Vergleich zur Umfeldleuchtdichte könnten in den Sättigungsbereich der visuellen Farbmechanismen führen, so daß die Ellipsengrößen eventuell nicht direkt in der Praxis angewendet werden können.

Sie werden vereinzelt noch zur Festlegung kleiner Farbtoleranzen eingesetzt. Hierzu dienten früher Diagramme von *Simon-Godwin*. Entsprechend diesen Diagrammen und den Ergebnissen von *MacAdam* sind die Ellipsengrößen im Schwellenbereich *unabhängig* vom Hellbezugswert *Y*. Dies widerspricht den Aussagen der Farbstufungen der Muster im OSA- und *Munsell*-Farbsystem, wo die Buntheit als Funktion von $Y^{1/3}$ zunimmt. Eigene Experimente bestätigen die weitgehende Unabhängigkeit der Ellipsengrößen vom Hellbezugswert im Bereich 10 < Y < 100 (*Vergrößerung maximal 20 % zum Schwarz hin*).

Bild 4_20Farbschwellen,

Farbartdiagramme $8140_2, 8140_3, 8140_7$ Farbschwellen-Ellipsen (*MacAdam* 1942) in der Farbtafel (*a*, *b*) und den Farbartdiagrammen (*a'*, *b'*) von CIELAB 1976 und (*a''*, *b''*) von LABJNDS 1985, vergrößert um den Faktor 20

Bild 4_20 zeigt die *Farbschwellen-Ellipsen (MacAdam* 1942) in der Farbtafel (*a*, *b*) und den Farbartdiagrammen (*a'*, *b''*) von CIELAB 1976 und (*a''*, *b''*) von LABJNDS 1985, vergrößert um den Faktor 20. Im Farbartdiagramm (*a'*, *b''*), das zum Farbenraum CIELAB 1976 gehört, nimmt die Ellipsengröße von Unbunt (schwarzer Punkt) nach außen radial zu. Weiter fällt eine Orientierung der

größeren Ellipsenachsen von etwa 530 nm nach 400 nm auf, die bisher ungeklärt ist.

Bild 4_21 zeigt ein neues Koordinaten-System (*a*, *b*). Im Bild *oben links* ist ein neues *a* eingezeichnet, das nicht vom Nullpunkt aus orientiert ist, sondern vom Schnittpunkt des tritanopischen Verwechslungspunkts aus, der durch die Gelb-Blau-Farbenfehlsichtigkeit festgelegt ist und bei (x = 0,175, y = 0,000) liegt.

Bild 4_21 zeigt die *MacAdam*-Ellipsen (*MacAdam* 1942) in der geänderten Farbtafel (*a*, *b*) (*oben rechts*) und dem geänderten Farbartdiagramm (*a*", *b*"). Die Farbschwellen zeigen in dem neuen Farbartdiagramm (*a*", *b*") eine verkleinerte Größen-Variation im Vergleich zu den bisherigen Bildern. Die CIE wird voraussichtlich in Kürze die Empfindlichkeitsfunktionen der Rezeptoren *P*, *D* und *T*, die man auch *L*, *M* und *N* nennen kann, definieren. Mit diesen kann man neue Koordinaten (*a*, *b*) definieren und die Farbschwellen-Ellipsen voraussichtlich besser beschreiben.

Die Definition des Farbenraums LABJNDS 1985 (JND = just noticeable difference) wird ab Bild 4_70 auf Seite 144 genauer dargestellt. Hierzu wurden 10 000 Messungen (*Richter*, 1985) mit sechs Beobachtern bei grauem Umfeld mit weißem Rahmen verwendet, die im folgenden dargestellt werden.

4.7.2 Farbschwellen-Experimente von Richter

Bild 4_22RG-Farbschwellen Richter

8150_1, 8150_3, 8150_7 Farbschwellen (*Richter* 1985) in Rot– Grün-Richtung (*RG*) in der Normfarbtafel (*x*, *y*) und den Farbartdiagrammen (*a'*, *b'*) von CIELAB 1976 und (*a''*, *b''*) von LAB-JNDS 1985, vergrößert um den Faktor 20

Bild 4_22 zeigt Farbschwellen (*Richter* 1985) in Rot–Grün-Richtung (*RG*) in der Normfarbtafel (*x*, *y*) und den Farbartdiagrammen (*a'*, *b'*) von CIELAB 1976 und (*a''*, *b''*) von LABJNDS 1985, vergrößert um den Faktor 20. Im Farbartdiagramm (*a'*, *b'*), das zum Farbenraum CIELAB 1976 gehört, nimmt die Schwellengröße von Unbunt (schwarzer Punkt) nach außen radial zu. Im Farbartdiagramm (*a''*, *b''*) ist die Größe weitgehend identisch.

Die Experimente wurden für Infeldfarben durchgeführt, die in ihrem Hellbezugswert *Y* mit dem des grauen Umfelds ($Y_u = 17$) mit weißem Rahmen übereinstimmten. Einige Experimente für blaue dunklere Farben mit dem Hellbezugswert *Y* = 6 liefern im Blau-Bereich höhere Sättigungen und sind durch unterbrochene Striche dargestellt. Die Farbartdifferenz ist hier um etwa 1,5 vergrößert.

Die Grundlagen zur Entwicklung des Farbenraums LABJNDS 1985 (JND = just noticeable difference) und dessen Formeln werden ab Bild 4_70 auf Seite 144 genauer dargestellt.

Bild 4_23 zeigt Farbschwellen (*Richter* 1985) in Gelb-Blau-Richtung (*JB*) in der Normfarbtafel (x, y) und den Farbartdiagrammen (a', b') von CIELAB 1976 und (a'', b'') von LABJNDS 1985, vergrößert um den Faktor 20. Im Farbartdiagramm (a', b'), das zum Farbenraum CIELAB 1976 gehört, nimmt die Schwellengröße von Unbunt (schwarzer Punkt) nach außen radial zu. Im Farbartdiagramm (a'', b'') ist die Größe weitgehend identisch.

Bild 4_24OC-Farbschwellen Richter

 $8170_1, 8170_3, 8170_7$ Farbschwellen (*Richter* 1985) in Orange– Cyan-Richtung (*OC*) in der Normfarbtafel (*x*, *y*) und den Farbartdiagrammen (*a'*, *b'*) von CIELAB 1976 und (*a''*, *b''*) von LAB-JNDS 1985, vergrößert um den Faktor 20

a

500c

5250

700

Bild 4_24 zeigt Farbschwellen (*Richter* 1985) in Orange-Cyan-Richtung (*OC*) in der Normfarbtafel (x, y) und den Farbartdiagrammen (a', b') von CIELAB 1976 und LABJNDS 1985, vergrößert um den Faktor 20. Im Farbartdiagramm (a', b'), das zum Farbenraum CIELAB 1976 gehört, nimmt die Schwellengröße von Unbunt (schwarzer Punkt) nach außen radial zu. Im Farbartdiagramm (a'', b'') ist die Größe weitgehend identisch.

Bild 4_25*LM*-Farbschwellen *Richter*

 $8180_1, 8180_3, 8180_7$ Farbschwellen (*Richter* 1985) in Laubgrün–Magenta-Richtung (*LM*) in der Normfarbtafel (*x*, *y*) und den Farbartdiagrammen (*a'*, *b'*) von CIELAB 1976 und (*a''*, *b''*) von LABJNDS 1985, vergrößert um den Faktor 20

Bild 4_25 zeigt Farbschwellen (*Richter* 1985) in Laubgrün-Magenta-Richtung (*LM*) in der Normfarbtafel (x, y) und den Farbartdiagrammen (a', b') von CIE-

LAB 1976 und (a'', b'') von LABJNDS 1985, vergrößert um den Faktor 20. Im Farbartdiagramm (a', b'), das zum Farbenraum CIELAB 1976 gehört, nimmt die Schwellengröße von Unbunt (schwarzer Punkt) nach außen radial zu. Im Farbartdiagramm (a'', b'') ist die Größe weitgehend identisch.

Bild 4_26 Farbschwellen, Farbartdiagramme $8151_7, 8161_7, 8171_7, 8181_7$ Farbschwellen (*Richter* 1985) in vier Richtungen (*RG*, *JB*, *OC* und *LM*) im Farbartdia-
gramm (a'', b''). Die a-Koordinate basiert auf der Farbenfehlsichtigkeit Tritanopie.

Bild 4_26 zeigt eine in Bild 4_21 Seite 99 für die *MacAdam*-Ellipsen benutzte Farbarttafel (a'', b'') mit *neuer a*-Koordinate. Die Farbschwellen (*Richter* 1985) in vier Richtungen (*RG*, *JB*, *OC* und *LM*) sind im Farbartdiagramm (a'', b'') eingetragen. In diesem Farbartdiagramm (a'', b'') ist ihre Größe weitgehend identisch. Die Farbschwellen-Farbabstandsformel (*Richter 1985*) LAB-JNDS 1985 beschreibt die direkten Farbschwellen-Experimente mit einer hohen Güte. Die Verbesserung gegenüber der Farbabstandsformel CIELAB 1976 ist erheblich, und man kann sagen, daß CIELAB 1976 für diesen Zweck ungeeignet ist.

4.8 Unbunt-Schwellen, Darbietungszeit und Leuchtdichte

Die Farbschwellen in Hell-Dunkel-Richtung auf der Graureihe oder einer Sättigungsreihe von Schwarz nach z. B. Orangerot *O* hängen von einer Vielzahl von Parametern ab.

Die Beschreibung der Farbschwellen in Hell-Dunkel-Richtung ist bisher in einem Modell des Farbensehens nur in Ansätzen für wenige Parameter gelungen. Erst die modernen Grafikbildschirme ermöglichen es, umfassende Experimente durchzuführen. Gegenüber unseren Experimenten über mehr als sechs logarithmische Leuchtdichte-Einheiten stehen allerdings am Farbmonitor kaum mehr als zwei logarithmische Leuchtdichte-Einheiten zur Verfügung. In diesem eingeschränkten Bereich sind in nächster Zeit durch Experimente mit Farbmonitoren viele neue Grundlagenkenntnisse zu erwarten.

Bild 4_27 Leuchtdichte-Unterscheidung in log-lin-Darstellung 9080_6 Infeld-Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-lin-Darstellung; Parameter Umfeld-Leuchtdichte $L_{\rm n}$

Bild 4_27 zeigt die Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-lin-Darstellung. Parameter ist die Umfeldleuchtdichte L_u des grauen Umfelds. Im grauen Umfeld werden zwei unbunte Halbfelder für 0,1 s oder 25 s dargeboten. Normalzustand ist die Darbietung eines grauen quadratischen Felds mit weißem Umfeldrand.

Für die Darbietungszeit 0,1 s ist der Beobachter an das graue Umfeld adaptiert. Die Unterscheidung ist jeweils bei der Umfeldleuchtdichte am größten und nimmt nach beiden Seiten entsprechend einer unsymmetrischen Gaußfunktion ab. Die Unsymmetrie wurde von *Richter* (1989) auf zwei visuelle Prozesse zurückgeführt, einen Schwarz–Weiß- und einen Weiß–Schwarz-Prozeß. Die hier dargestellten Ergebnisse ergeben sich für die Darbietungszeit 0,1s durch Umrechnung der experimentellen Daten von Bild 4_10 auf Seite 89.

Für die Darbietungszeit 25 s scheint sich der Beobachter jeweils an *das Infeld* vollständig zu adaptieren. Mit dieser Annahme ist zu erklären, daß die experi-

mentellen Daten angenähert *parallel zur Tangente der Maxima* verlaufen. Die Parallelverschiebung bedeutet eine insgesamt etwas keinere Schwelle (ΔL etwas kleiner) und ist auf die größere Beobachtungszeit zurückzuführen.

Bild 4_28 Leuchtdichte-Unterscheidung in log-log-Darstellung 9080_2 Infeld-Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-log-Darstellung; Parameter Umfeldleuchtdichte $L_{\rm u}$

Bild 4_28 zeigt die Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-log-Darstellung. Parameter ist Umfeldleuchtdichte L_{u} .

Bild 4_29 Leuchtdichte-Unterscheidung und Darbietungszeit 9081_6 Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-lin-Darstellung. Vergleich mit Formeln CIELAB (hier Näherung proportional $L^{1/3}$) und Weber-Fechner $L / \Delta L = \text{const.}$

Bild 4_29 zeigt die Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-lin-Darstellung. Ein Vergleich mit Formeln CIELAB (hier Näherung Helligkeit L^* proportional $L^{1/3}$) und Weber-Fechner (hier Näherung $L / \Delta L = \text{const.}$) für große L ergibt grundsätzliche Unterschiede zwischen den experimentellen Ergebnissen und den verschiedenen Theorien. Das Weber-Fechner-Gesetz wurde im Bild zum Schwarz hin noch modifiziert, siehe den Ansatz von Stiles (1946) in Bild 4_47 auf Seite 122.

Bild 4_30 Leuchtdichte-Unterscheidung und Darbietungszeit 9081_2 Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-log-Darstellung. Vergleich mit Formeln CIELAB (hier Näherung proportional $L^{1/3}$) und Weber-Fechner $L / \Delta L$ = const.

Bild 4_30 zeigt die Leuchtdichte-Unterscheidung $L / \Delta L$ für unbunte Farben der Leuchtdichten L bei Darbietungszeiten 0,1 s und 25 s des Infelds in einer log-log-Darstellung. Ein Vergleich mit Formeln CIELAB (hier Näherung Helligkeit L^* proportional $L^{1/3}$) und Weber-Fechner (hier Näherung $L / \Delta L =$ const.) für große L ergibt grundsätzliche Unterschiede zwischen den experimentellen Ergebnissen und den verschiedenen Theorien.

Die Darstellungen dieses Abschnitts führen uns an die Grenzen der heutigen Kenntnisse über Farbensehen. Es ist bisher nicht gelungen, ein einheitliches Modell für das Farbensehen zu entwickeln, welches neben der Leuchtdichte L und der Umfeldleuchtdichte L_u die Darbietungszeit, die Adaptationszeit, die Feldgröße und die Umfeldleuchtdichte enthält.

Aus dem Anstieg der Leuchtdichte-Unterscheidung mit der Umfeldleuchtdichte kann abgeleitet werden, daß sich die Buntheit und Helligkeit, die man dann mit Buntheitsfülle (engl. Colourfullness) und Helligkeitsfülle bezeichnet, analog ändert. Aus der Steigung in Bild 4_28 geht hervor, daß sich die Buntheits- und Helligkeitsfülle proportional dem Faktor (L/L_u)^{1/6} ändert. Mit dieser Annahme ergibt sich bei einer Verzehnfachung der Umfeldleuchtdichte von 100 cd / m² auf 1000 cd / m² eine Erhöhung der Farb-Unterscheidung, der Buntheit und der Helligkeit um 46 %.

Eine Einordnung dieser Ergebnisse in eine allgemeine Theorie des Farbensehens, die gleichabständige Farbstufungen oder Farbreihen an der Erkennbarkeits-Schwelle beschreibt, ist noch weitgehend offen.

Gleichabständige Farbreihen, z. B. von getrennt liegenden Farbmustern auf mittelgrauer Umgebung, spielen eine große Rolle bei der visuellen Abmusterung. Farbreihen im Bereich von Farbschwellen mit aneinander grenzenden Farbmustern auf mittelgrauer Umgebung spielen zur Justierung von Monitoren eine entscheidende Rolle. Ansätze für die sich abzeichnenden Farb- und Lichtmetriken für diese Grenzfälle werden im folgenden dargestellt.

4.9 Zwei Schwarz-Weiß-Prozesse für unbunte Farben

In den Anwendungsbereichen Farbfotografie bei Diaprojektion und Computergrafik mit Farbmonitoren oder LCD-Displays treten **Lichtfarben** auf, die oft mit **Aufsichtfarben** verglichen werden müssen.

Daher sind experimentelle Ergebnisse mit Lichtfarben von besonderer Bedeutung. Um Farben in beiden Situationen überhaupt vergleichen zu können, benötigt man als gemeinsamen Bezug gleichartige Umfeld-Gesichtsfelder. Hierzu wird entsprechend CIE-Empfehlungen ein mittelgraues Umfeld mit einem weißen Rahmen benutzt.

Die Standard-Aufsichtfarben-Situation umfaßt ein mittelgraues Umfeld mit einer Reflexion von 0,2 (Hellbezugswert $Y_u = 20$) und einem weißen Rahmen mit einer Reflexion um 0,9 (Hellbezugswert $Y_w = 90$).

Die Standard-Lichtfarben-Situation umfaßt ebenfalls ein mittelgraues Umfeld der Leuchtdichte $L_{\rm u} = 100 \text{ cd} / \text{m}^2$, das sind etwa 1500 lux Beleuchtungsstärke bei einem Reflexionsfaktor von 0,2. Der weiße Rahmen hat dann die 4,5-fache Leuchtdichte von $L_{\rm w} = 450 \text{ cd} / \text{m}^2$. In den nächsten Bildern ist die experimentelle Sehsituation von grauem Umfeld mit weißem Rahmen dargestellt.

Bild 4_31 Leuchtdichte-Unterscheidung und Umfeld 8751_1, 8751_2 Leuchtdichteunterscheidung $L/\Delta L$ für unbunte Infeldfarben verschiedener Leuchtdichte L_i ; Parameter: Umfeldleuchtdichte L_u (*links*). Annäherung für fünf verschiedene L_u der Experimente durch den Prozeß Schwarz N (*rechts*).

Bild 4_31 zeigt die Leuchtdichteunterscheidung $L/\Delta L$ für unbunte Infeldfarben als Funktion ihrer Leuchtdichte *L*. Als Parameter dient die Umfeldleuchtdichte L_u , welche die Leuchtdichte des grauen Umfelds der Sehsituation während der Experimente darstellt. In den Experimenten wurden fünf Umfeldleuchtdichten 1, 10, 100, 1000 und 10000 cd/m²gewählt. Der Beobachter adaptierte sich an das graue Umfeld. Die beiden Halbfelder wurden nur kurzzeitig (0,1s) dargeboten. Man kann annehmen, daß während dieser Zeit keine Umadaption des visuellen Systems möglich ist und damit die "ursprünglichen" visuellen Sehprozesse gemessen werden. An der Erkennbarkeits-Schwelle ist der Leuchtdichte-Unterschied ΔL mit 50% Wahrscheinlichkeit erkennbar.

Die im Bild 4_31 (*links*) dargestellten Ergebnisse für fünf verschiedene L_u sind im Bild 4_31 (*rechts*) wiederholt, und die *dunklen* Infeldfarben sind jeweils im Vergleich zum grauen Umfeld durch den Prozeß Schwarz N beschrieben.

Bild 4_32 Leuchtdichte-Unterscheidung, zwei Prozesse 8751_3, 8751_4 Leuchtdichteunterscheidung $L/\Delta L$ für fünf verschiedene $L_{\rm u}$; Annäherung der Experimente durch den Prozeß Weiß *W* (*links*), und Annäherung für mittleres Umfeld $L_{\rm u}$ durch die Prozesse Weiß *W* und Schwarz *N* (*rechts*)

Bild 4_32 zeigt erneut die Leuchtdichteunterscheidung $L/\Delta L$ für fünf verschiedene L_u . Jetzt ist die Annäherung der Experimente für die *hellen* Infeldfarben durch den Prozeß Weiß W (*links*) dargestellt. Für das mittlere Umfeld $L_u = 100 \text{ cd} / \text{m}^2$ werden die Experimente (*rechts*) je zur Hälfte durch den Prozeß Schwarz N und den Prozeß Weiß W beschrieben.

Die Beschreibung von experimentellen Ergebnissen über Farbschwellen durch zwei visuelle Prozesse haben wir für die Rot-Grün-Richtung bereits in Bild 4_4 auf Seite 85 und Bild 4_5 auf Seite 85 kennengelernt. Hier werden entsprechend **zwei visuelle Prozesse für die Schwarz-Weiß-Richtung** verwendet. Zwischen Schwellen und Skalierung wurde für die Rot-Grün-Richtung ein Zusammenhang ermittelt. Ein entsprechendes Modell zur Beschreibung von Schwellen und Skalierung für die Schwarz-Weiß-Richtung wird in Abschnitt 4.16 "Dreifach-Linienelement für Schwellen und Stufung" auf Seite 125 entwickelt.
4.10 Rezeptorempfindlichkeiten linear und logarithmisch

Bild 4_33 Rezeptorempfindlichkeiten, Modell λ 8620_4, 8620_8 Lineare (*links*) und logarithmische (*rechts*) relative Empfindlichkeit von Rezeptoren *P*, *D* und *T* sowie von Hellempfindlichkeiten *V* und *V*'; Experiment und Theorie; Modell Wellenlänge λ

Bild 4_33 zeigt die lineare (*links*) und logarithmische (*rechts*) relative Empfindlichkeit von Rezeptoren *P*, *D* und *T* sowie von Hellempfindlichkeiten *V* und *V*'. Die Einzelpunkte zeigen experimentelle Daten, und die ausgezogenen Kurven sind eine theoretische Beschreibung in einem einfachen Modell, das die Wellenlänge λ benutzt.

Spektrale Empfindlichkeiten s von Spektrale Sättigungen *p(=*purity) Rezeptorsystemen P, D, T, V, V' von Rezeptorsystemen P, D, T, V, V' $u = \lambda =$ Wellenlänge; $u = \nu =$ Frequenz $u = \lambda$ =Wellenlänge; u = v=Frequenz $s(u) = e^{-u^2} i = 2/5; j = 3/5$ $s(u) = e^{-u^2}$ $v=1/\lambda$ e=2,7183 $\nu = 1/\lambda$ $s(\mathbf{P}, \mathbf{D}, \mathbf{T}, \mathbf{C})$ Modell λ : $u = \frac{1}{55.5} (\lambda - \lambda_0)$ Modell Y: p =**S**(. P)+js(D) $s(\mathbf{P}, \mathbf{D}, \mathbf{T})$ Modell v: $u = 5550 (v - v_0)$ Modell V: p = s(V)Maxima λ_0 von **P**, **D**, **T**, **V**, **V'** in Modell U: $p = \frac{p_{i}(p_{i})}{e[\frac{i\ln(P)+j\ln(D)}{2}]}$ $s(\mathbf{P}, \mathbf{D}, \mathbf{T}, \mathbf{\bar{D}})$ Nanometer: 570, 545, 450, 555, 505

Bild 4_34 Modell Rezeptorempfindlichkeiten

Spektrale Empfindlichkeiten $s(u) = s(\lambda)$ oder $s(u) = s(1/\lambda) = s(\nu)$ (*links*) und spektrale Sättigungen $p(u) = p(\lambda)$ oder $p(u) = p(1/\lambda) = p(\nu)$ von Rezeptoren *P*, *D*, *T*, *V* und *V*'; Modelle Wellenlänge λ und Frequenz ν

8780_1,8780_2

Bild 4_34 zeigt die Formeln zur Berechnung der spektralen Empfindlichkeiten $s(u) = s(\lambda)$ oder $s(u) = s(1/\lambda)$ (*links*) und spektralen Sättigungen $p(u) = p(\lambda)$ oder $p(u) = p(1/\lambda)$ von Rezeptoren *P*, *D*, *T*, *V* und *V*'. Die Wellenlängen der maximalen Empfindlichkeiten sind im Bild 4_34 angegeben. Die zwei Hellempfindlichkeiten sind mit *V* ($\lambda_{max} = 555$ nm) für das Tagessehen und *V*' ($\lambda_{max} = 505$ nm) für das Nachtsehen bezeichnet. Einer Koordinatendifferenz von $\Delta u = 0,1$ im Modell entspricht die Wellenlängendifferenz $\Delta \lambda = 5$ nm.

Bild 4_35 Rezeptorempfindlichkeiten, Modell v 8621_4, 8621_8 Lineare (*links*) und logarithmische (*rechts*) relative Empfindlichkeit von Rezeptoren *P*, *D* und *T* sowie von Hellempfindlichkeiten *V* und *V*'; Experiment und Theorie; Modell Frequenz v

Bild 4_35 zeigt die lineare (*links*) und logarithmische (*rechts*) relative Empfindlichkeit von Rezeptoren *P*, *D* und *T* sowie von Hellempfindlichkeiten *V* und *V*'. Die Einzelpunkte zeigen experimentelle Daten, und die ausgezogenen Kurven sind eine theoretische Beschreibung in einem einfachen Modell, das die Frequenz v benutzt.

Bei Benutzung der Frequenz v ist die Beschreibung des Rezeptors *T* besser, bei Benutzung der Wellenlänge λ ist die Beschreibung von *T* schlechter. Eine insgesamt bessere Beschreibung für *P*, *D*, *V* und *V*' ergibt sich mit dem Modell λ , das im folgenden benutzt wird. Eine bessere Beschreibung des Rezeptors *T* zum Ultravioletten hin könnte durch eine Blau-UV-Absorption der Augenlinse zusätzlich berücksichtigt werden. Hierauf wird im folgenden verzichtet.

Bild 4_36 Y- und U-Empfindlichkeit, Modell λ 8630_5, 8630_7 Lineare (*links*) und logarithmische (*rechts*) Addition der Rezeptorempfindlichkeiten *P* und *D* zur *Y*-Empfindlichkeit (*links*) und *U*-Empfindlichkeit (*rechts*); Modell Wellenlänge λ

Bild 4_36 zeigt die lineare (*links*) und logarithmische (*rechts*) Addition der Rezeptorempfindlichkeiten *P* und *D* zur *Y*-Empfindlichkeit (*links*) und *U*-Empfindlichkeit (*rechts*). Das Modell ist durch eine Empfindlichkeit mit einer symmetrischen Parabel über der Wellenlänge λ gekennzeichnet. Diese symmetrische Parabelform kann auch bei einer von 1:1 abweichenden Gewichtung der Rezeptoren *P* und *D* erreicht werden, z. B. falls der Wellenlängenabstand ihrer maximalen Empfindlichkeit nicht symmetrisch zu 555 nm liegt. Die Standard-Parabelform entsteht bei logarithmischer Summierung (*Formel für U im Bild rechts*) mit dem Gewicht 2/5 und 3/5, wenn die Maximalempfindlichkeiten von *P* bei 570 nm und von *D* bei 545 nm liegen.

Die Unterschiede der Y- und U-Hellempfindlichkeit lassen sich aus Bild 4_36 abschätzen. Die logarithmische U-Empfindlichkeit ist gleich der weißen Parabelform in Bild 4_36 (*rechts*). Im Bild 4_36 (*links*) ergibt sich eine Abweichung zwischen gelber und weißer Kurve, welche die Abweichung zwischen Y- und U-Empfindlichkeit beschreibt.

Die Gültigkeit des linearen *Abney*schen Gesetzes zur Berechnung der *Y*-Hellempfindlichkeit aus den Rezeptor-Empfindlichkeiten *P* und *D* wird oft bezweifelt. Mit der *Y*-Hellempfindlichkeit kann man die Eindruckshelligkeit, die man auch Hellheit nennen kann, nicht befriedigend beschreiben.

Die Hellheit wird mit beeinflußt durch die Zunahme der Brillantheit (Leuchtheit) bzw. Abnahme der Schwarzheit für eine Buntheitsreihe von Unbunt zu Bunt bei konstantem Hellbezugswert. Die Brillantheit I^* läßt sich aus Helligkeit L^* und Buntheit C^* berechnen:

 $I^* = L^* - 0.5 C^*$ (Brillantheit = Leuchtheit)

Die Hellheit, die durch den *Helmholtz-Kohlrausch*-Effekt beschrieben wird, nimmt um etwa um den Faktor 10 weniger mit der Buntheit ab:

 $H^* = L^* - 0.05 C^*$ (Eindruckshelligkeit = Hellheit)

Es ist umstritten, ob die *"wellenlängenunabhängige"* Konstante *"* – 0,05 " im Gelb-Bereich den Wert Null erreicht und im Gelb-Grün-Bereich sogar positiv ist, d. h. *"* + 0,05 " beträgt.

Bild 4_37 zeigt die *Y*-Sättigung (*links*) und *U*-Sättigung (*rechts*) von Rezeptoren *P*, *D* und *T*. Das Modell benutzt die Wellenlänge λ . Die *Y*-Empfindlichkeit ergibt sich nach dem *Abney*schen Gesetz als *halbe* lineare Summe der beiden Rezeptor-Empfindlichkeiten *P* und *D*. Die *U*-Empfindlichkeit ergibt sich als *halbe* logarithmische Summe der Rezeptor-Empfindlichkeiten *P* und *D*.

Die U-Sättigungen ergeben sich überraschend als *lineare* Funktionen der Wellenlänge, obwohl sie aus logarithmischen Rezeptor-Empfindlichkeiten von Parabelform berechnet werden. Nimmt man an, daß sich ein bisher unbekanntes "einfaches" Modell des Farbensehens ergeben wird bzw. die Natur auf einfache Gesetzmäßigkeiten zustrebt, so ist das sogenannte *lineare "Abneysche* Gesetz" nicht bevorzugt gegenüber der *logarithmischen* Alternative von Bild 4_37 (*rechts*), da diese ebenfalls zu einer *besonderen linearen Beziehung* für die wichtige Farbseheigenschaft Sättigung als Funktion der Wellenlänge λ führt.

Bild 4_37 (rechts) zeigt mit dem Quotienten Y/U (gelbe Kurve), daß die Y- gegenüber der U-Empfindlichkeit um 0,3 logarithmische Einheiten an den Spektralenden größer ist. Die Y-Empfindlichkeit ist nicht zur Beschreibung des Helmholtz-Kohlrausch-Effekts geeignet, da sie an den Spektralenden und für gesättigte Farben stets zu klein berechnet wird.

4.11 Konstante U-Hellempfindlichkeit und P-D-Adaptation

Bild 4_38*P***-**, *D***- und** *U***-Empfindlichkeit, -Sättigung** 9050_1, 9050_2 Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von Rezeptoren *P*, *D* mit log. 0-Normierung; Maximale Empfindlichkeiten für u = -0,3 (540 nm) und u = 0,3(570 nm); Adaptation an u = 0 (555 nm); kein Beitrag von *T* zu *P* (*Gleichung oben*)

Bild 4_38 zeigt die Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von Rezeptoren *P*, *D* mit logarithmischer 0-Normierung. Die Maxima der Empfindlichkeiten von *P* und *D* wurden für u = -0,3 (540 nm) und u = 0,3 (570 nm) angenommen und sind zunächst auf 1 normiert (log = 0). Bei Adaptation an die hierzu symmetrische Mitte u = 0 (555 nm) ergibt sich die *U*-Hellempfindlichkeit als **Mittel** über die beiden Rezeptorempfindlichkeiten *P* und *D*, ihr Maximum ist kleiner als 1, bzw. ihr Logarithmus ist kleiner als Null. Die beiden *U*-Sättigungen sind *lineare* Funktionen der Wellenlänge.

Bild 4_39*P''-, D''-* und *U''-*Empfindlichkeit, -Sättigung 9051_1, 9051_2 Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von adaptierten Rezeptoren *P'', D''* und Mittel *U''*; Maxima der Empfindlichkeiten für u = -0,3 (540 nm) und u = 0,3(570 nm); Adaptation u = 0 (555 nm); kein Beitrag von *T* zu *P*

Bild 4_39 zeigt die Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von Rezeptoren P'' und D'', jetzt jedoch mit logarithmischer 0-Normierung für die U''-Hellempfindlichkeit. Die Maxima der Empfindlichkeiten von P und D wurden für u = -0,3 (540 nm) und u = 0,3 (570 nm) angenommen und ergeben sich auf den Wert 1,06 normiert (log > 0). Bei Adaptation an u = 0 (555 nm) ergibt sich die U''-Hellempfindlichkeit als **Mittel** über die beiden Rezeptorempfindlichkeiten P'' und D'', ihr Maximum ist genau 1, bzw. ihr Logarithmus ist genau Null. Die beiden U''-Sättigungen sind *lineare* Funktionen der Wellenlänge.

114

Bild 4_40*P*''-, *D*''- und *U*''-Empfindlichkeit, -Sättigung 9060_1, 9060_2 Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von adaptierten Rezeptoren *P*'', *D*'' und Mittel *U*''; Maxima der Empfindlichkeiten für u = -0,3 (540 nm) und u = 0,3(570 nm); Adaptation u = 0 (555 nm); 5-%-Beitrag von *T* zu *P*

Bild 4_40 zeigt die Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von Rezeptoren *P*", *D*" mit logarithmischer 0-Normierung für die *U*"-Hellempfindlichkeit. Die Maxima der Empfindlichkeiten von *P* und *D* wurden *symmetrisch* für u = -0,3 (540 nm) und u = 0,3 (570 nm) angenommen. Die Empfindlichkeit von *P* wurde durch einen 5-%-Beitrag von *T* zu *P* modifiziert, vgl. Gleichung oben rechts im Bild. Die *adaptierte* Empfindlichkeit *P*" ist durch den Normierungsfaktor 1,06 beschrieben, und ihr logarithmischer Maximalwert ist größer 0, d. h., es gilt: log *P*" (u = 0,3) > 0 und log *U*" (u = 0) = 0.

Bei Adaptation an u = 0 (555 nm) ergibt sich die U"-Hellempfindlichkeit als **Mittel** über die beiden Rezeptorempfindlichkeiten P" und D". Das Maximum der U"-Hellempfindlichkeit hat erneut den Wert 1, bzw. ihr Logarithmus ist genau Null. Die beiden U"-Sättigungen zeigen als Funktion der Wellenlänge zwei Schnittpunkte bei etwa 440 nm und 555 nm. Solche Schnittpunkte haben besondere Bedeutung für die Beschreibung der Elementarfarben Blau ($\lambda = 475$ nm) und Gelb ($\lambda = 575$ nm), diese Zielwellenlängen werden hier jedoch noch nicht erreicht. Die hier dargestellte Abweichung von der Parabelform, einerseits der *P*"-Empfindlichkeit zum kurzwelligen Ende hin sowie andererseits der *T*"-Empfindlichkeit (*hier nicht dargestellt*) zum langwelligen Ende hin, zeigt sich bei allen bekannten Messungen der Rezeptor-Empfindlichkeiten. Daher ist eine entsprechende Simulation im Modell zwingend. Dies führt uns zu möglichen Beschreibungen der jeweils zwei gegenfarbigen Elementarfarben und der entsprechenden Krümmung einer zu entwickelnden logarithmischen Farbarttafel mit zwei Sättigungen in Gelb-Blau- und Rot-Grün-Richtung als Basis-Koordinaten.

Bild 4_41*P''***-**, *D''***- und** *U''***-Empfindlichkeit, -Sättigung** 9061_1, 9061_2 Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von adaptierten Rezeptoren *P''*, *D''* und Mittel *U''*; Maxima der Empfindlichkeiten für u = -0.3 (540 nm) und u = 0.3(570 nm); Adaptation u = 0.4 (575 nm); 5-%-Beitrag von *T* zu *P*

Bild 4_41 zeigt die Empfindlichkeiten (*links*) und Sättigungen (*rechts*) von Rezeptoren *P*", *D*", wobei erneut eine logarithmische 0-Normierung für die *U*"-Hellempfindlichkeit erreicht ist. Die Maxima der Empfindlichkeiten von *P* und *D* wurden für u = -0,3 (540 nm) und u = 0,3 (570 nm) angenommen. Bei Adaptation an u = 0,4 (575 nm) ergeben sich die Normierungsfaktoren zu 0,9 für *P* und 1,25 für *D*, vgl. Gleichungen oben rechts im Bild.

Das Maximum der U"-Hellempfindlichkeit ist erneut genau 1, bzw. ihr Logarithmus ist genau Null. Die beiden U"-Sättigungen zeigen als Funktion der Wellenlänge einen Schnittpunkt bei 575 nm. Dieser Schnittpunkt hat besondere Bedeutung für die Beschreibung der Elementarbe Gelb ($\lambda = 575$ nm), diese Zielwellenlänge ist hier durch **Adaptation** erreicht. Adaptation bedeutet eine vertikale Verschiebung der Rezeptorempfindlichkeit im Bild 4_41. Dies entspricht einer Änderung der Rezeptorempfindlichkeit um einen konstanten *wellenlängenunabhängigen* Faktor (0,9 bzw. 1,25 im Bild).

Änderungen dieser Art sind als *von-Kries*-Transformation in der Farbmetrik bekannt. Neu an der hier vorliegenden Darstellung ist, daß bei Adaptation an eine beliebige Wellenlänge die aus *P*" und *D*" gemittelte *U*"-Empfindlichkeit konstant bleibt. Die Erhöhung *einer* Empfindlichkeit führt zu einer gekoppelten Erniedrigung der *anderen* Empfindlichkeit bei allen Adaptationen. Experimentell ergibt sich die spektrale Hellempfindlichkeit in der Flimmerfotometrie als *unabhängig* vom Umfeld. *Die Hellempfindlichkeit ist also konstant, auch wenn ein Umfeld fehlt, weiß, grau oder bunt ist.* Genau dies wird durch das hier vorliegende Modell beschrieben, indem die *U*"-Hellempfindlichkeit konstant ist. Sie kann daher im folgenden mit *U*-Empfindlichkeit und ihre entsprechende Sättigung mit *U*-Sättigung (*ohne die Anfügung* "*für Adaptation*) bezeichnet werden.

Bisher wurden die Rezeptor-Empfindlichkeiten bzw. -Signale als *Funktion der Wellenlänge* beschrieben. Im folgenden steht die Beschreibung als *Funktion der Leuchtdichte* im Vordergrund. Alle physiologischen Messungen und theoretischen Überlegungen führen zu dem Ergebnis, daß diese Signale als Funktion der *logarithmischen* Leuchtdichte wie eine sogenannte *S*-förmige Funktion variieren. Die *S*-förmige Funktion zeigt am Arbeitspunkt, das heißt der Adaptationsleuchtdichte des grauen Umfelds, einen Wendepunkt.

Der bisher meist verwendete CIELAB-Farbenraum zeigt z. B. mit der Gleichung für die Helligkeit L^* als Funktion des Hellbezugswerts Y eine stetige Zunahme der Helligkeit mit dem Hellbezugswert. Es gilt:

 $L^* = 116 (Y/100)^{1/3} - 16$ (CIELAB-L*-Helligkeit)

bzw. die Näherung:

 $L^* = 100 (Y/100)^{1/2,4}$.

Eine Sättigung bzw. ein Maximalwert der Helligkeit bei Blendung ist nicht Inhalt der CIELAB-Beschreibung. Die im CIELAB-Farbenraum verwendete Potenzfunktion (Kubikwurzel-Potenz) kann das Farbensehen also nur in einem sehr eingeschränkten Bereich für normale nichtfluoreszierende Körperfarben beschreiben. Potenzfunktionen können Lichtfarben *nicht* beschreiben, die sich in der Leuchtdichte um mehrere logarithmische Einheiten unterscheiden. Die Anwendung des CIELAB-Farbenraums auf helle Lichtfarben widerspricht physiologischen Ergebnissen und theoretischen Überlegungen.

Die im folgenden verwendeten S-förmigen Funktionen hängen ab von der Infeldleuchtdichte L über $x = \log L$, der Umfeldleuchtdichte L_u über $u = \log L_u$ und der logarithmischen U-Sättigung, die wir mit p bezeichnen (p = engl. purity = Sättigung).

4.12 Rot-Grün-Farbsignale als Funktion der Leuchtdichte

Bild 4_42 zeigt die Farb-Signale -Q[2(x-u+p)]+1 und -2Q[1(x-u+p)]+2 mit $x = \log L$ und $u = \log L_{u}$.

Die Funktionen Q werden noch später genauer beschrieben und zeigen im Bild die gewünschte S-Form mit einem mittleren Wendepunkt bei u = 2. Die Farb-Signale sind hier jeweils für *drei* visuelle Prozesse dargestellt. Der mittlere Prozeß ist der Unbunt- oder *U*-Prozeß, der zum Schwarz hin verschobene Prozeß wird mit dem Index 1 und der zum Weiß hin verschobene Prozeß wird mit dem Index 2 gekennzeichnet.

Diese Bezeichnung führt zu den Farbsignalen der drei visuellen Prozesse P_1 , U=Unbunt und D_2 mit Sättigungen p = 1, 0, -1 (linkes Bild) und den Buntsignalen als Differenz der visuellen Prozesse P_1 und D_2 mit Sättigungen p = 1, -1 (rechtes Bild). Nach den vorherigen Abschnitten gibt es in Schwarz-Weiß-Richtung als Funktion der Leuchtdichte **zwei** Prozesse, die wir als Prozeß Schwarz N und Weiß W bezeichnet haben. Daher ergeben sich im Bild beim Übergang auf Farbe jeweils drei Prozesse Schwarz N und drei Prozesse Weiß W, die sich in der Amplitude unterscheiden. Die Prozesse Weiß sind in helleren Farben und die Prozesse Schwarz in dunkleren Farben dargestellt.

Der Arbeitspunkt liegt bei allen Prozessen bei x = 2 bzw. $L_u = 100$ cd / m². Die U-Sättigungen p = 1, 0, -1 markieren eine Verschiebung um $\Delta x = -1$ und $\Delta x = 1$ für die Prozesse P_1 und D_2 gegenüber U. Die in Bild 4_42 (*rechts*) dargestellte Differenz der beiden Signale P_1 und D_2 sowohl für den Prozeß Schwarz N als auch für Weiß W kann als Bunt-Signal gedeutet werden. Dieses erreicht am Arbeitspunkt den maximalen Wert und fällt nach Schwarz und Weiß hin entsprechend einer Gauß-Funktion über $x = \log L$ ab.

Bild 4_43*RG***-Farbsignale und Leuchtdichte** 8730_3, 8730_4 Farb-Signale Q[2(x-u+p)] und -2Q[1(x-u+p)] mit $x = \log L$ und $u = \log L_u$. Signale für visuelle Prozesse P_1 , U = Unbunt und D_2 mit Sättigungen p = 1, 0, -1 (*links*) und Buntsignaladdition errechnet aus Prozessen P_1 und D_2 mit Sättigungen p = 1, -1 (*rechts*).

Bild 4_43 zeigt die Farb-Signale Q[2(x-u+p)] und -2Q[1(x-u+p)] mit $x = \log L$ und $u = \log L_{11}$.

Die hier gewählte Normierung von negativ zu positiv entspricht den physiologischen Messungen in der Netzhaut. Einige Modelle des Farbensehens zeigen vergleichbare Normierungen. Die Helligkeit wird dann normiert auf $L^* = 0$ für Mittelgrau, $L^* = -50$ für Schwarz N und $L^* = +50$ für Weiß W. Eine entsprechende Normierung wird zum Beispiel im OSA-Farbsystem vorgenommen.

Bild 4_43 zeigt die Signale für die visuellen Prozesse P_1 , U=Unbunt und D_2 mit Sättigungen p = 1, 0, -1 (*links*), und eine Buntsignaladdition errechnet aus Prozessen P_1 und D_2 mit Sättigungen p = 1, -1 (*rechts*). Die Buntsignaladdition im Bild rechts auf das Unbuntsignal wird als Amplitudenmodulation bezeichnet. Eine solche Farbcodierung und Übertragungsart wird zum Beispiel im Farbfernsehen technisch durchgeführt. Die im Bild 4_43 (*rechts*) dargestellten Unbunt-Signale mit Addition bzw. Subtraktion der Buntsignale ist gemessenen Signalverläufen sehr ähnlich. In der Netzhaut von Affen hat *Valberg* (1987) mit Mikrosonden die Unbunt- und Farb-Signale als Funktion der Infeld-Leuchtdichte gemessen. Sie entsprechen weitgehend der Darstellung im Bild.

4.13 Gelb-Blau-Farbsignale als Funktion der Leuchtdichte

Bild 4_44*BJ***-Farbsignale und Leuchtdichte** Farb-Signale -Q[2(x-u+p)]+1 und -2Q[1(x-u+p)]+2 mit $x = \log L$ und $u = \log L_u$. Signale für visuelle Prozesse T_1 , U = Unbunt und J_2 mit Sättigungen p = 2, 0, -0, 5(*links*) und Buntsignale als Differenz der visuellen Prozesse T_1 und J_2 mit Sättigungen p = 2, -0, 5 (*rechts*).

Bild 4_44 zeigt die Farb-Signale -Q[2(x-u+p)]+1 und -2Q[1(x-u+p)]+2 mit $x = \log L$ und $u = \log L_{u}$.

Die Farb-Signale für visuelle Prozesse T_1 , U = Unbunt und J_2 mit Sättigungen p = 2, 0, -0.5 (*links*) sind *unsymmetrisch* um die *U*-Unbuntsignale verteilt.

Die *unsymmetrischen* Sättigungen p = 2 und p = -0.5 sind hier willkürlich gewählt. Die *BJ*-Buntsignale wurden als Differenz der visuellen Prozesse T_1 und J_2 mit Sättigungen p = 2, -0.5 (*rechts*) berechnet. Die *Unsymmetrie* ergibt gewisse Schwierigkeiten im Farbsehmodell, entspricht jedoch der Erfahrung der *kleinen* Sättigung von Gelb *J* gegenüber einer *großen* Sättigung von Blau *B*.

Grundsätzlich könnte das Modell auch so aufgebaut werden, daß entsprechend der U-Hellempfindlichkeit, die sich als logarithmisches Mittel von P'' und D''ergibt, jetzt eine N''-Hellempfindlichkeit (N'' = Nachtsehen) berechnet wird, die sich als logarithmisches Mittel aus U'' und T'' ergibt.

Diese *N*"-Hellempfindlichkeit ist erneut eine Parabel, ihre maximale Empfindlichkeit errechnet sich zu 503 nm und liegt in der Mitte der maximalenWellenlängen von *T*" (450 nm) und *U*" (555 nm). Zufällig (?) stimmt diese Wellenlänge (503 nm) mit der Wellenlänge am Maximum der spektralen Empfindlichkeit $V'(\lambda)$ des *Nachtsehens* und der Wellenlänge der spektralen Elementarfarbe Grün überein. Ein entsprechendes Modell wird in Abschnitt 4.19 "Empfindlichkeiten und symmetrische N"-Sättigungen" ab Seite 134 entwikkelt.

Die beiden N"-Sättigungen log (T''/N'') bzw. log (U''/N'') sind symmetrisch zur N"-Hellempfindlichkeit aufgebaut. Sie sind weiter *linear* als Funktion der Wellenlänge. Die berechneten Bunt-Signale als Differenz der Prozesse T_1 und U_2 sind numerisch identisch mit den zuvor berechneten Buntsignalen, die auf einer *unsymmetrischen* Verteilung der Farbsignale beruhen. Ein Modell mit einer N"-Empfindlichkeit und einer N"-Sättigung wird in Abschnitt 4.19 ab Seite 134 weiter verfolgt und hat den *Vorteil der Symmetrie*.

Bild 4_45*BJ***-Farbsignale und Leuchtdichte** Farb-Signale Q[2(x-u+p)] und -2Q[1(x-u+p)] mit $x = \log L$ und $u = \log L_u$. Signale für visuelle Prozesse T_1 , U = Unbunt und J_2 mit Sättigungen p = 2, 0, -0.5 (*links*) Buntsignaladdition errechnet aus Prozessen T_1 und J_2 mit Sättigungen p = 2, -0.5 (*rechts*).

Bild 4_45 zeigt die Farb-Signale Q[2(x-u+p)] und -2Q[1(x-u+p)] mit $x = \log L$ und $u = \log L_{u}$.

Die hier gewählte Normierung von negativ zu positiv entspricht den physiologischen Messungen in der Netzhaut. Die Farb-Signale für die visuellen Prozesse T_1 , U = Unbunt und J_2 mit Sättigungen p = 2, 0, -0,5 sind entsprechend normiert (*links*). Die Buntsignale, errechnet aus Prozessen T_1 und J_2 mit Sättigungen p = 2, -0,5, ergeben die bereits vom Rot-Grün-Prozeß bekannte Amplituden-Modulation der Farbinformation auf der Unbunt-Information (*rechts*). Die Rot-Grün-Amplitudenmodulation wurde bereits in Bild 4_43 auf Seite 118 dargestellt.

4.14 Leuchtdichte und historische Farb-Linienelemente

Bild 4_46Linien-Elemente, Leuchtdichte, Farbwerte8720_5, 8720_6Leuchtdichte- und Farbsignale im Linienelement von Richter (links) für Lichttechnikund Farbmetrik mit Leuchtdichte L und leuchtdichtenormierten Farbwerten P, D undT; drei separate Farbsignale im Linienelement von Helmholtz (1896) (rechts) für dieFarbmetrik mit relativen Farbwerten P, D und T

Bild 4_46 zeigt die Leuchtdichte- und Farbsignale im Linienelement von *Richter (links)* für die Lichttechnik *und* Farbmetrik mit der Leuchtdichte *L* bzw. den leuchtdichtenormierten Farbwerten *P*, *D* und *T*. Dieses Modell versucht in einer ersten Stufe nur eine Beschreibung von Farbstufungen und Farbschwellen *für unbunte Farben variabler Leuchtdichte L*. Das Modell stützt sich auf eine große Zahl experimenteller Daten aus der Lichttechnik über mehr als fünf logarithmische Leuchtdichte-Einheiten. Erst in einer zweiten Stufe wird das Modell für Farbe variiert, und es werden die relativen Farbwerte *P*, *D* und *T* benutzt.

Fünf andere Modelle von *Helmholtz* (1896), *Stiles* (1946), *Vos & Walraven* (ab 1972), *Hunt* (ab 1980) und *Nayatani* (ab 1980), die im folgenden kurz skizziert werden, beschreiben in einer ersten Stufe vorzugsweise nur die Farbe und fügen erst in einer zweiten Stufe die Farbstufungen von unbunten Farben ein. Ihre Strategie zur Entwicklung der Modelle für die Farb- und Lichtmetrik ist also genau umgekehrt. Mit dieser Strategie sind die Erfolgschancen für gute farbmetrische Modelle geringer, da erstens nur wenige gute farbmetrische experimentelle Daten und nur für einen sehr eingeschränkten Leuchtdichte-Bereich im Vergleich zu lichttechnischen Daten (*für unbunte Farben*) vorliegen und zweitens die Leuchtdichte bzw. die spektrale Hellempfindlichkeit die dominierende Rolle im Farbensehen spielt, z. B. bei Farbschwellen und Auflösungsvermögen.

Bild 4_46 (*rechts*) zeigt drei separate Farbsignale im Linienelement von *Helmholtz* (1896) für die Farbmetrik mit relativen Farbwerten *P*, *D* und *T*. Für die Farb-Unterscheidbarkeit ergeben sich die Gesetze von *Weber-Fechner*, das sind $\Delta P / P = \text{const.}, \Delta D / D = \text{const.}$ und $\Delta T / T = \text{const.}$ bei $\Delta F = \text{const.}$

Bild 4_47 Linien-Elemente der Farbmetrik8720_7, 8720_8Drei separate Farbsignale im Linienelement von Stiles (1946) (links) und im Linienelement von Vos & Walraven (1972) (rechts) für die Farbmetrik mit relativen FarbwertenP, D und T

Bild 4_47 zeigt drei separate Farbsignale im Linienelement von *Stiles* (1946) (*links*) und im Linienelement von *Vos & Walraven* (1972) (*rechts*) für die Farbmetrik mit relativen Farbwerten *P*, *D* und *T*. Den drei Modellen von *Helmholtz*, *Stiles* und *Vos & Walraven* ist gemeinsam, daß jeweils **drei** Signalfunktionen gebildet werden, die sich aus den Rezeptor-Farbwerten *P*, *D* und *T* berechnen.

Die drei Linienelemente erzeugen *keine* Begrenzung der Farb-Signale zum Schwarz *N und* zum Weiß *W* hin, die sich nur durch *S*-Funktionen beschreiben lassen. Die Signale der drei Modelle wachsen *unbegrenzt* mit großen Rezeptor-Farbwerten, und das Modell von *Helmholtz* liefert unendlich große negative Signale zum Schwarz hin. In den Modellen von *Stiles* sowie von *Vos & Walraven* streben die Signale zum Schwarz hin gegen Null. Die drei Modelle sind daher nur in einem sehr eingeschränkten Leuchtdichte-Bereich verwendbar.

Die von *Hunt* und *Nayatani* ab 1980 entwickelten Farbmodelle benutzen ebenfalls *S*-förmige Funktionen zur Begrenzung der Farbsignale zum Schwarz und zum Weiß hin. Die Modelle haben Erfolge bei der Beschreibung verschiedener Effekte, z. B. der Zunahme der Eindruckshelligkeit mit der Buntheit bei gleichem Hellbezugswert (*Helmholtz-Kohlrausch*-Effekt), der Zunahme der Buntheits- und Helligkeitsfülle mit der Beleuchtungsstärke bzw. Leuchtdichte der Sehsituation (*Hunt*-Effekt).

Eine Beschreibung von zugleich **Farbstufungen und Farbschwellen** enthalten die Modelle von *Hunt* und *Nayatani* bisher nicht. Im folgenden Modell werden die Bereiche **Farbstufungen und Farbschwellen** mit neuen Gleichungen verbunden. Experimentelle Daten aus einem Bereich liefern so **Voraussagen** für den jeweils anderen Bereich. Dies ist ein **besonderer Vorteil** dieses **komplexen** Modells.

4.15 Doppel-Linienelement für Schwellen

Bild 4_48Unbuntteil- und Unbunt-Signale

8720_1, 8720_2

Unbunt-Teilsignale q[k(x-u)] (*links*) und Unbunt-Signale Q[k(x-u)] (*rechts*) mit $x = \log L$ (L = Infeldleuchtdichte) und $u = \log L_u$ ($L_u =$ Umfeldleuchtdichte)

Bild 4_48 zeigt die Unbunt-Teilsignale q[k(x-u)] (*links*) und Unbunt-Signale Q[k(x-u)] (*rechts*) mit $x = \log L$ (L = Infeldleuchtdichte) und $u = \log L_u$ ($L_u =$ Umfeldleuchtdichte). Die Formeln beschreiben die bereits in Bild 4_42 gezeigten S-Funktionen. Sie variieren mit $x = \log L$. Einige wichtige Definitionen der S-Funktionen, die wir mit Q bezeichnen, sind angegeben. Die mathematische Ableitung Q' der Funktion Q ist notwendig, um aus dieser eine Formel für das Leuchtdichte-Unterscheidungsvermögen $L/\Delta L$ zu entwickeln.

Bild 4_49 Unbuntsignale, Unterscheidungsvermögen 8720_3, 8720_4 Unterscheidung der Unbuntsignale und Unterscheidungsvermögen der Leuchtdichte $L/\Delta L$, berechnet aus der Ableitung der Unbunt-Signale d $\{Q[k(x-u)]\}/dx$ mit $\ln H = k(x-u), x = \log L$ und $u = \log L_u$

Bild 4_49 zeigt die Unterscheidung der Unbuntsignale und das Unterscheidungsvermögen der Leuchtdichte $L / \Delta L$, berechnet aus der Ableitung der Unbunt-Signale $d\{Q[k(x-u)]\} / dx$ mit ln H = k(x-u), $x = \log L$ und $u = \log L_u$.

Doppel-Linienelement von *Richter* **Doppel-Linienelement von** *Richter* (1987) für die Lichttechnik mit (1987) für die Lichttechnik mit der Leuchtdichte L = F(P, D, T)der Leuchtdichte L = F(P, D, T)Leuchtdichte-Signalfunktion F(L)Leuchtdichte-Signalfunktion F(L) $H=e^{k(x-u)}$ $\underline{i} Q(\underline{H}) (x < u)$ F(L) = iO(H)F(L) = iO(H) $O[\ln\{1+1/(1+\sqrt{2}H)\}]/\ln\sqrt{2}-1$ H) $(x \ge u)$ **Taylor-Ableitungen:** $\overline{i} = -2$ k=1.4 $\overline{\mathbf{k}}=1$ i=1mit: $\Delta F(L) = \frac{\mathrm{d}F}{\mathrm{d}I} \Delta L = i \frac{\mathrm{d}Q}{\mathrm{d}H} \Delta H$ $x = \log L \quad u = \log L_{n}$ $\underline{\mathbf{k}}(x-u)$ = $\mathbf{k}(x-u)$ $\mathbf{k}(x-u)$ $i\sqrt{2\Delta H}/[\ln\sqrt{2(1+\sqrt{2H})(2+\sqrt{2H})}]$

Bild 4_50Doppel-Linienelement von *Richter* 8780_7, 8780_8 Doppel-Linienelement Teil I (*links*) und Teil II (*rechts*) von *Richter* (1987) für den Bereich Lichttechnik mit $x = \log L$; die Leuchtdichte L ist eine Funktion von P, D und T

Bild 4_50 zeigt das Doppel-Linienelement Teil I (*links*) und Teil II (*rechts*) von *Richter* (1987) für den Bereich Lichttechnik mit $x = \log L$. Die Leuchtdichte L ist eine Funktion von *P*, *D* und *T*.

Q-Funktions-Änderung; Übergang von der Licht- zur Farb-Metrik Stufungsfunktion der Lichtmetrik: $Q [\mathbf{k}(\mathbf{x} - \mathbf{u}] = Q[\mathbf{k}(\log L - \log L_u)]$ Ersatz log $L \rightarrow \log P$ für Farbmetrik: $Q[\mathbf{k}(\log P - \log L_u)]$ $= Q[\mathbf{k}(\log L - \log L_u + \log P - \log L)]$ mit Sättigung $p = \log P - \log L$ folgt für Farbmetrik: $Q [\mathbf{k}(\mathbf{x} - \mathbf{u} + p)]$

Bild 4_51 Übergang von der Licht- zurFarbmetrik 8240_2 Übergang von der Licht- zur Farbmetrik;
an die Stelle von nur Leuchtdichte von In-
und Umfeld (L und L_u) tritt zusätzlich die
Sättigung p

Bild 4_51 zeigt den Übergang von der Licht- zur Farbmetrik. Die Leuchtdichte von In- und Umfeld (L und L_u) ist weiterhin enthalten, jedoch zusätzlich die U-Sättigung p. Die U-Sättigung $p = \log P - \log L = \log (P/L)$ erzeugt in den Funktionen Q, ähnlich wie das Umfeld mit der logarithmischen Leuchtdichte $u = \log L_u$, eine *horizontale* Verschiebung der S-förmigen Signalfunktionen auf der Leuchtdichte-Achse entlang $x = \log L$, vgl. z. B. Bild 4_43 auf Seite 118.

Das Linien-Element für Farbe wird daher abweichend zu den historischen Linien-Elementen von *Helmholtz* (1896), *Stiles* (1946) und *Vos & Walraven* (1972) nicht aus drei Farbsignal-Funktionen entwickelt: Es entsteht durch Modifikation des Linien-Elements für unbuntes *Licht* mit nur den Leuchtdichten *L und* L_u . Das Farb-Linienelement benutzt hier eine horizontale Verschiebung $p = \log P - \log L$ entlang der logarithmischen Leuchtdichte-Achse $x = \log L$.

4.16 Dreifach-Linienelement für Schwellen und Stufung

Bild 4_52Schwellen und Stufungsprozeß 8830_7, 8831_7 Unbunt-Signale Q[1,4(x-u)] (*N*-Prozeß) und -2Q[1,0(x-u)] (*W*-Prozeß) (*links*) und Änderung Unbunt-Signale $d\{Q[1,4(x-u)]\} / dx$ (*N*-Prozeß) und $d\{-2Q[1,0(x-u)]\} / dx$ (*W*-Prozeß) (*rechts*) mit $x = \log L$; die Summe der Signale beschreibt Stufungsdaten

Bild 4_52 zeigt Unbunt-Signale Q[1,4 (x-u)] (*N*-Prozeß) und -2Q[1,0 (x-u)] (*W*-Prozeß) (*links*) und die Änderung der Unbunt-Signale $d \{Q[1,4(x-u)]\} / dx$ (*N*-Prozeß) und $d \{-2Q[1,0 (x-u)]\} / dx$ (*W*-Prozeß) (*rechts*) mit $x = \log L$. Die Signalsumme beschreibt Stufungsdaten. Die Prozesse *N* und *W* haben ent-gegengesetzte Vorzeichen (+ und –), unterschiedliche Amplituden (1 und 2) und Leuchtdichte-Bandbreiten (1,4 und 1,0). Zum Wert 1,4 gehört die kleinere Bandbreite.

Farbcodierung der Farbsignale (Impulse / s); Prozesse Weiß W und Schwarz N für Gegenfarben Rot–Grün und Mittel (*links*) sowie das Mittel der Prozesse Weiß W und Schwarz N mit Amplituden-Modulation von Rot–Grün (*rechts*); für die Prozesse Weiß W und Schwarz N werden große (U, R, G) und kleine Buchstaben (u, r, g) verwendet **Bild 4_53** zeigt die Farbcodierung der Farbsignale (Impulse / s), die zur Beschreibung der verschiedenen Signalarten für Schwellen und Skalierungen in den folgenden Bildern notwendig sind, um die Übersicht zu behalten. Die jeweils drei Prozesse für Weiß W und Schwarz N, nämlich für Unbunt und jeweils zwei Gegenfarben Grün G und Rot R werden durch entsprechende helle und verschwärzlichte Farben gekennzeichnet (*links*). Die Farbcodierungen für das unbunte Mittel der Prozesse Weiß W und Schwarz N sind *rechts* wiederholt. Die Amplituden-Modulation der Gegenfarbenprozesse Grün G und Rot R wird für die N- und W-Prozesse durch Dreiecke gekennzeichnet (*rechts*)

Bild 4_54*GR***-Farbsignale: Schwellen und Skalierung** 8931_1, 8931_2 *U*-Unbunt-, Grün₁- und Rot₂-Signale (p = 1, 0, -1) (*links*); *U*-Unbunt-Signale und Buntsignale Grün und Rot (*rechts*); jeweils für Schwellen-Prozesse Schwarz N und Weiß W sowie Stufungs- oder Summen-Prozesse NW, vgl. Dreifach-Linienelement

Bild 4_54 zeigt die *U*-Unbunt-, G_1 - und R_2 -Signale (p = 1, 0, -1) (*links*) und die *U*-Unbunt-Signale und Buntsignale *G* und *R* (*rechts*), jeweils für Schwellen-Prozesse Schwarz *N* und Weiß *W* sowie Skalierungs- oder Summen-Prozesse *NW*. Die Stufungs-Signale *NW* führen vom **Zweifach-Linienelement** für Schwellen zum **Dreifach-Linienelement** für **Schwellen und Stufung**. Die Prozesse *N*, *W* und *NW* haben drei verschiedene Steigungen, sie legen daher drei verschiedene Metriken fest. Die Bedeutung für die Anwendung wird im folgenden noch diskutiert werden.

Die im vorherigen Bild 4_53 angegebene Farbcodierung wird hier erstmals verwendet. Zur Darstellung von neun Prozessen in einem Bild sind systematische Farbwahl unbedingt erforderlich. Bild 4_54 unterscheidet sich von Bild 4_42, Seite 117, durch die zusätzlichen Summen-Prozesse *NW* und die Benutzung der Konstante k = 1,4 anstelle von k = 2, die zur sinnvollen Beschreibung der Stufung (Steigung 0,33) benötigt werden. Entsprechende Summen-Prozesse werden auch im nächsten Bild dargestellt.

Bild 4_55*GR***-Farbsignale: Schwellen und Skalierung** 8931_3, 8931_4 *U*-Unbunt-Signale für Prozesse *N*, *W* und *NW*; Amplituden-Modulation der *N*- und *W*-Buntsignale G-R (G_1-R_2) oder R-G auf den *U*-Prozessen *N* und *W* (*links*); Amplituden-Modulation der *NW*-Buntsignale G-R (G_1-R_2) oder R-G auf dem *U*-Prozeß *NW* (rechts)

Bild 4_55 zeigt die *U*-Unbunt-Signale für die Prozesse *N*, *W* und *NW*. Bild 4_55 (*links*) zeigt die Amplituden-Modulation der *N*- und *W*-Buntsignale G-R (G_1-R_2) oder R-G auf den *U*-Prozessen *N* und *W*. Bild 4_55 (*rechts*) zeigt die Amplituden-Modulation der *NW*-Buntsignale. Diese *NW*-Buntsignale wurden als Mittel aus den amplitudenmodulierten *N*- und *W*-Buntsignalen berechnet, entsprechend der Berechnung der *NW*-Unbunt-Signale als Mittel aus den *N*- und *W*-Unbunt-Signalen.

Zusammenfassend kann man sagen, daß das Farbensehen ein äußerst komplexer Vorgang ist. Die Beschreibung in einem einheitlichen Modell muß wegen vieler wichtiger Anwendungsfelder zielstrebig weiter verfolgt werden.

Die Beschreibung des Farbensehens ist für die Computergrafik und die Reproduktionsbereiche von großer Bedeutung.

Die sinnvolle Codierung, Speicherung und Übertragung der Farbinformation ist nur mit guten Grundlagenkenntnissen möglich. Farbstufungen und Farbschwellen müssen hierzu als Funktion verschiedener Parameter, z. B. der Leuchtdichte und der Farbart von In- und Umfeld, bekannt sein. Die hier dargestellten Formeln bilden eine wesentliche Hilfe zur Lösung dieser Aufgabe.

Das folgende Experiment und seine überraschenden Ergebnisse sollen mit als Anreiz dienen – neben den in diesem Kapitel dargestellten Eigenschaften des Farbensehens –, auch dieses in ein verbessertes Modell des Farbensehens einzubauen. Aus seinen Ergebnissen ergibt sich ein Zwang zur anschließenden Entwicklung eines symmetrischen Modells für Farbschwellen.

4.17 Symmetrisches Farbschwellensehen

Bild 4_56 Komplementäre schmalbandige Optimalfarben 8570_3 Spektralschablonen zur Erzeugung komplementärer Optimalfarben durch Spektralfarben-Mischung; Farbschwelle bei gleicher Verschiebung beider Spalte (kleine Spaltbreite)

Bild 4_56 zeigt Spektralschablonen zur Erzeugung komplementärer Optimalfarben durch Spektralfarben-Mischung, z. B. mit einem spektralen Farbmischgerät, vgl. Bild 2_30 auf Seite 39.

Mit einem spektralen Farbmischgerät entsteht z. B. ein homogenes Weiß, gemischt aus allen Spektralfarben mit angenähert gleicher relativer Strahlung. Durch Spektralschablonen mit einem *Spalt* zwischen zwei Wellenlängengrenzen werden alle dazwischenliegenden Spektralfarben zu einer homogenen Optimalfarbe gemischt, und durch einen *inversen* Spalt entsteht die dazu komplementäre Optimalfarbe.

Die Farbschwelle wird bei *gleicher Verschiebung beider Spalte* (nahezu Spektralfarbe und Weiß minus Spektralfarbe) erreicht, vgl. *Holtsmark* (1971). Die Ergebnisse deuten auf eine starke Symmetrie des Farbensehens hin.

Die Ergebnisse stellen besondere Anforderungen an die *mathematische Struktur einer Formel zur Beschreibung der Farbschwellen*. Bisher ist es nicht gelungen, diese experimentellen Ergebnisse in ein Modell des Farbensehens auf einfache Weise einzuordnen.

Die Farbabstandsformel CIELAB 1976, die eine in etwa quadratische Helligkeitsbeschreibung als Funktion der Leuchtdichte enthält, liefert am Schwarzpunkt für Spektralfarben und am Weißpunkt für komplementäre Spektralfarben (Weiß minus Spektralfarbe) völlig unterschiedliche Abstände (Faktor 1:10). Es ist bekannt, vgl. Abschnitt 4.7 auf Seite 97, daß die CIELAB-Formel nicht zur Beschreibung von Farbschwellen geeignet ist.

Wir werden in nächsten Abschnitt versuchen, das bisher entwickelte Gegenfarbenmodell *symmetrisch* aufzubauen. Dieses Ziel ist nach den vorliegenden experimentellen Ergebnissen anzustreben. Es ist noch offen, ob es durch das skizzierte Modell gelingen wird, die Ergebnisse von *Holtsmark* auch quantitativ zu beschreiben.

Das experimentelle Ergebnis der Symmetrie liegt nicht nur für Spektralfarben und ihre komplementären Spektren vor. Die **Symmetrie des Farbensehens für Farbschwellen** scheint ein allgemeineres Prinzip zu sein, wie aus der folgenden Variation des *Holtsmark*-Experiments hervorgeht.

Bild 4_57 Komplementäre breitbandige Optimalfarben 8570_4 Spektralschablonen zur Erzeugung komplementärer Optimalfarben durch Spektralfarben-Mischung; Farbschwelle bei gleicher Verschiebung beider Spalte (große Spaltbreite)

Bild 4_57 zeigt Spektralschablonen zur Erzeugung komplementärer Optimalfarben durch Spektralfarben-Mischung bei großer Spaltbreite. Nach *Holtsmark* (1971) ergeben sich auch hier die Farbschwellen für **gleiche Spaltverschiebungen** und damit eine *Symmetrie des Farbensehens, die bisher ungekärt ist.*

Das hier behandelte komplementäre Farbspektrum (Weiß minus Farbe bzw. Weiß minus Spektralfarbe) wurde als *Kantenspektrum* schon von *Goethe* beschrieben:

- Betrachtet man mit einem Prisma nebeneinanderliegende Kanten von Schwarz nach Weiß und von Weiß nach Schwarz, so entstehen *benachbarte komplementäre Spektren*.
- Ersetzt man nebeneinander liegende Kanten von Schwarz nach Weiß und umgekehrt durch einen schmalen positiven und negativen Spalt, vgl. Bild 4_56, so entstehen Spektralfarben (*Newton*-Farben) und Weiß minus Spektralfarben (*Goethe*-Farben) nebeneinander bei Betrachtung durch das Prisma.
- Gleich starke Farbänderungen erscheinen jeweils an benachbarten Stellen im positiven und negativen Spektrum. Dies gilt auch bei Erhöhung der Spaltbreite, vgl. Bild 4_57.

Mit diesen *Goethe*-Experimenten kann man so die Behauptung "gleiches Farbunterscheidungsvermögen" *für komplementäre Farbspektren* direkt visuell überprüfen.

Bild 4_58 Rezeptor, *U''-, N''-* **und** *J''-***Empfindlichkeit** 9011_1,9011_3 Logarithmische Empfindlichkeit von "adaptierten Rezeptoren" *P'', D'', T'', U'', N''* und *J''*; Adaptationswellenlängen u = 0,4 ($\lambda = 575$ nm) und u = -1 ($\lambda = 505$ nm); *N''-*Empfindlichkeit als Mittel aus *U''* und *T''* sowie *J''-*Empfindlichkeit als Mittel aus *N''* und *U''*; keine Änderung von *P, D* oder *T* (*links*) und Änderung um 5 % (*rechts*).

Bild 4_58 zeigt die logarithmische Empfindlichkeit von adaptierten "Rezeptoren" *P*", *D*", *T*", *U*", *N*" und *J*". Als Adaptationswellenlängen sind u = 0,4($\lambda = 575$ nm) und u = -1 ($\lambda = 505$ nm) definiert. Neu definiert sind die *N*"-Empfindlichkeit als logarithmisches Mittel aus *U*" und *T*" sowie die *J*"-Empfindlichkeit als Mittel aus *N*" und *U*". Die Rezeptor-Empfindlichkeiten von *P*, *D* oder *T* von Parabelform wurden im Bild 4_58 (*links*) direkt verwendet. Im Bild 4_58 (*rechts*) wurde die Parabelform um 5 % modifiziert, vgl. Gleichungen oben rechts in den Bildern.

Die Bilder 4_58 (*links und rechts*) zeigen einige völlig neue Aspekte des Farbensehens gegenüber den bisherigen Bildern.

- Der Rezeptor *T* ist für *u* = -1 (λ = 505 nm) adaptiert, er schneidet die *U*"-Empfindlichkeit an dieser Wellenlänge. Da diese Wellenlänge in der Mitte zwischen den maximalen Empfindlichkeiten von *U*" (555 nm) und *T*" (λ = 450 nm) liegt, ist das Maximum von *T*" auf 1 normiert, da auch das Maximum von *U*" auf 1 normiert ist.
- Das logarithmische Mittel (bzw. die halbe logarithmische Summe) der T"und U"-Empfindlichkeit wird mit N"-Empfindlichkeit bezeichnet. Die Wellenlänge der maximalen Empfindlichkeit beträgt λ = 505 nm, und es ergibt sich die Standard-Parabelform. Wir nennen sie N"-Empfindlichkeit (N = Nacht-sehen), da die Wellenlänge ihres Maximalwerts mit der Empfindlichkeit V'(λ) des Nachtsehens übereinstimmt.

- 4 Besondere Eigenschaften des Farbensehens
- Die *N*"-Empfindlichkeit steht zu *T*" und *U*" in einem vergleichbaren Zusammenhang wie die *U*"-Empfindlichkeit zu *P*" und *D*".
- Die *R* und *G*-*U*"-Sättigungen (*R* = Rot und *G* = Grün) sind symmetrisch. Sie haben als Funktion der Wellenlänge den gleichen Betrag. Es gilt:
 log (*P*"/*U*") = log *P*" log *U*"
 log (*D*"/*U*") = log *D*" log *U*"
 log (*P*"/*U*") = log *D*" log *U*"
 log (*P*"/*U*") = log *D*" log *U*"
- Die *J* und *B*-*N*"-Sättigungen (*J* = Gelb und *B* = Blau) sind *symmetrisch*. Sie haben als Funktion der Wellenlänge den gleichen Betrag. Es gilt: log (*U*"/*N*") = log *U*" log *N*" log (*T*"/*N*") = log *T*" log *N*" | log (*T*"/*N*") | = | log (*U*"/*N*") |
 Eine mit den *RG*-Sättigungen log (*P*"/*U*") und *JB*-Sättigungen log (*U*"/*N*") berechnete Farbarttafel zeigt Bild 4_62 auf Seite 136.
- In den bisher dargestellten Modellen, vgl. Bild 4_45 auf Seite 120, war der Betrag der *Blau*-Sättigung entsprechend der visuellen Erfahrung größer als der Betrag der *Gelb*-Sättigung. Jetzt ist der Betrag der *J-N"*-Sättigung für jede Wellenlänge gleich dem Betrag der *B-N"*-Sättigung. Dadurch wird ein symmetrisches Modell für Farbschwellen ermöglicht. Das notwendige unsymmetrische Modell für Stufungen benutzt *J"*-Sättigungen.
- Zusätzlich ist eine *J''*-Empfindlichkeit in den Bildern als Mittel der *U''*und *N''*-Empfindlichkeit eingetragen. Es ergibt sich wieder die Standard-Parabelform. Die Wellenlänge der maximalen *J''*-Empfindlichkeit ergibt sich zu 530 nm, berechnet als Mittel von 505 nm und 555 nm.
- Mit der *J*"-Empfindlichkeit definieren wir unsymmetrische *J* und *B*-*J*"-Sättigungen, die sich in einem neuen Modell zur Beschreibung von Stufungen eignen. Es gilt:

 $\log (U''/J'') = \log U'' - \log J''$ $\log (T''/J'') = \log T'' - \log J''$ $|\log (T''/J'')| = 3 |\log (U''/J'')|$

Der Faktor **drei** führt zu **unsymmetrischen** Farbarttafeln des *J*-Bereichs (25%) gegenüber dem *B*-Bereich (75%). Eine mit dieser Sättigung berechnete Farbarttafel zeigt Bild 4_65 auf Seite 139.

Es ist zu erwarten, daß der Farbort von Unbunt (Weiß) in einer unsymmetrischen Farbarttafel nicht im Schnittpunkt der Farbort-Verbindungsgeraden der beiden Elementarfarbenpaare R und G sowie J und B liegt. Er wird in der Mitte zwischen den Elementarfarben J und B liegen, d. h. um 1/3 zum B hin gegenüber dem Kreuzungspunkt verschoben. Die zwei Verbindungsgeraden

der Farborte der spektralen Elementarfarben G (505 nm) und R (494c nm, c = compensativ) mit dem Farbort von Unbunt bilden einen *stumpfen Winkel* entsprechend der Erfahrung.

- Durch die beschriebene Art der Mittelbildung schneidet die *J*"-Empfindlichkeit zugleich die *N*"-Empfindlichkeit bei 505 nm. Diese Wellenlänge stimmt zusätzlich mit der Elementarfarbe Grün überein.
- Zur Berechnung der JB-Unbunt- und JB-Bunt-Signale als Funktion der Leuchtdichte muß berücksichtigt werden, daß die T"-Empfindlichkeit die U"-Empfindlichkeit bei 505 nm schneidet. Auf der Leuchtdichte-Achse tritt für die grüne Spektralfarbe von 505 nm eine Signal-Verschiebung um ca. Δ x = - 0,4 auf, vgl. die vertikale Differenz zwischen D"-Empfindlichkeit und N"-Empfindlichkeit bei 505 nm im Bild 4_58 auf Seite 130. Für Unbunt, d. h. weder B noch J, ist dagegen keine Verschiebung zu erwarten, da die Signal-Schnittpunkte auf der Kurve der U"-Empfindlichkeit liegen.
- Sollte beim Farbensehen f
 ür J–B anstelle des Mittels von T
 " und U" eine Mittelbildung zwischen T
 " und P" oder T
 " und D" erfolgen, so ergeben sich auf der Leuchtdichte-Achse Verschiebungen zwischen den Unbunt-Signalen in B–J- und R–G-Richtung. Dieser Fall ist zu komplex und soll nicht betrachtet werden.
- Die *J* und *B*-**Buntsignale** sind *stets symmetrisch*. Sie ergeben sich stets als Differenz der gegenfarbigen Sättigungen, unabhängig von ihrer Definition als *U*-, *N* oder *J*-Sättigung. Es gilt für die *JB* und *RG*-Buntsignale:
 - $JB \qquad \log U'' \log T'' = \log (U'' / N'') \log (T'' / N'') \\ \log U'' \log T'' = \log (U'' / J'') \log (T'' / J'')$
 - $RG \qquad \log P'' \log D'' = \log (P'' / U'') \log (D'' / U'')$

Man beachte, daß sich die Beträge der Sättigungen log (U''/J'') und log (T''/J'') als Funktion der Wellenlänge um einen Faktor 3 unterscheiden.

In Modellen für mesopisches Sehen spielen mittlere Empfindlichkeiten, berechnet aus der skotopischen und fotopischen Hellempfindlichkeit für das Nachtund Tagessehen (vergleichbar mit N'' und U''), eine größere Rolle. Jedes Modell des Farbensehens für den mesopischen Bereich, wie es in letzter Zeit z. B. von *Sagawa* (1994) entwickelt wurde, enthält eine Mittelbildung beider Empfindlichkeiten.

Bild 4_59 zeigt die logarithmischen Sättigungen von adaptierten "Rezeptoren" *P*", *D*", *T*", *U*" und *J*". Als Adaptationswellenlängen sind u = 0,4 ($\lambda = 575$ nm) und u = -1 ($\lambda = 505$ nm) definiert. Die *N*"-Empfindlichkeit als Mittel aus *U*" und *T*" sowie die *J*"-Empfindlichkeit als Mittel aus *N*" und *U*" wurde verwendet. Die Rezeptor-Empfindlichkeiten von *P*", *D*" oder *T*" von Parabelform wurden im Bild 4_59 (*links*) verwendet. Im Bild 4_59 (*rechts*) wurde die Parabelform um 5 % modifiziert, vgl. Gleichungen oben rechts im Bild.

Ohne Modifikation der Parabelform der Rezeptor-Empfindlichkeiten ergeben sich für die Sättigungen Geraden, *vgl. Bild 4_59 links*. Mit Korrektur der Standard-Parabelform um 5 % ergeben sich verschiedene einfache Funktionen. Die *U*"-Sättigungen log *P*" – log *U*" und log *D*" – log *U*" haben für jede Wellenlänge den gleichen Betrag. Entsprechendes gilt für die *N*"-Sättigungen log *T*" – log *N*" (*cyan-graue Kurve*) und log *U*" – log *N*" (vgl. folgendes Bild).

Die eingezeichneten J"-Sättigungen $\log U" - \log J"$ (cyan-gelbe Kurve) und $\log T" - \log J"$ (violett-blaue Kurve) haben als Funktion der Wellenlänge nicht den gleichen Betrag. Der Betrag ihrer halben Gesamt-Differenz muß jedoch gleich dem Betrag der N"-Sättigungen $\log T" - \log N"$ (cyan-graue Kurve) sein. Daher bestehen zwischen N"- und U"-Sättigungen mathematische Zusammenhänge, die eine Formulierung des Farbensehens auf verschiedene Weise erlauben. Wir verwenden hier im symmetrischen Modell für Schwellen N"-Sättigungen für J-B und U"-Sättigungen für R-G.

Im symmetrischen Modell unterscheiden sich die J-B- und B-J- sowie die R-G- und G-R-Sättigung als Funktion der Wellenlänge jeweils nur im Vorzeichen und sind in ihrem Betrag numerisch identisch.

4.19 Empfindlichkeiten und symmetrische N''-Sättigungen

Bild 4_60*N*''-**Empfindlichkeit, -Sättigung** 9350_1, 9350_2, 9360_1, 9360_2 Rezeptorempfindlichkeiten für zwei *RG*-Adaptationszustände 575 nm (*oben links*) und 505 nm (*oben rechts*); zugehörige symmetrische Sättigungen (*unten links und rechts*) als logarithmischer Quotient der Rezeptoren-Empfindlichkeiten *P*'', *D*'' oder *T*'' mit *U*'' oder *N*''

Bild 4_60 zeigt Rezeptorempfindlichkeiten für zwei *RG*-Adaptationszustände 575 nm (*oben links*) und 505 nm (*oben rechts*) bei konstantem *JB*-Adaptationszustand 505 nm. Die zugehörigen symmetrischen Sättigungen (*unten links und rechts*) ergeben sich als logarithmischer Quotient der Rezeptoren-Empfindlichkeiten P'', D'' oder T'' mit U'' oder N''. Für N'' gilt:

 $\log N'' = 0.5 (\log T'' + \log U'').$

Bei Adaptation der Rezeptoren P'' und D'' an 505 nm (Elementargrün) oder 575 nm (Elementargelb) verändert sich *die Form* der Sättigung als Funktion der Wellenlänge λ nicht. Nur die Nullpunkte verschieben sich und deuten neue Elementarfarben an, über die noch diskutiert wird.

Bild 4_61 zeigt die Rezeptorempfindlichkeiten für zwei *RG*-Adaptationszustände 575 nm (*oben links*) und 505 nm (*oben rechts*) bei konstantem *JB*-Adaptationszustand 505 nm. Die zugehörigen *symmetrischen* Sättigungen (*unten links und rechts*) ergeben sich als logarithmischer Quotient der Rezeptoren-Empfindlichkeiten *P*", *D*" oder *T*" mit *U*" oder *N*". Eine Modifikation der Rezeptorempfindlichkeiten *P* und *D* um 2 % (*Gleichungen jeweils oben rechts*) wurde bei Berechnung der Sättigung angenommen.

Bei Adaptation der Rezeptoren P'' und D'' an 505 nm (Elementargrün) oder 575 nm (Elementargelb) verändert sich *die Form* der Sättigung als Funktion der Wellenlänge λ nicht. Nur die Nullpunkte verschieben sich und deuten neue Elementarfarben an, über die noch diskutiert wird.

Bild 4_62Symmetrische U''N''-Farbarttafel 9470_1, 9471_1 Logarithmische *symmetrische* Farbarttafel von adaptierten Rezeptoren; *eine RG*-Sättigung log (P'' / U'') und *eine JB*-Sättigung log (U'' / N''); vollständige Adaptation an $\lambda = 575$ nm (*links*) und $\lambda = 505$ nm (*rechts*); Modell mit Beitrag von 0,02 T zu P und 0,02 P zu T

Bild 4_62 zeigt die logarithmische symmetrische Farbarttafel von adaptierten Rezeptoren. *Eine RG*-Sättigung log (P'' / U'') sowie *eine JB*-Sättigung log (U'' / N'') bei vollständiger Adaptation an $\lambda = 575$ nm (*links*) und $\lambda = 505$ nm (*rechts*) definieren diese logarithmische Farbarttafel. Als Rezeptor-Empfindlichkeiten wurden drei adaptierte Rezeptoren *P''*, *D''* und *T''* benutzt. In der Modell-Berechnung wurde ein Beitrag von 0,02 P zu T und von 0,02 T zu P angenommen (*vgl. Gleichungen, oben rechts*). Die *J*-Sättigungen sind vom Betrag her gleich wie die *B*-Sättigungen, und daher entstehen *zwei* symmetrische Farbarttafeln als Funktion der Wellenlänge. Die hier dargestellte genügt zur vollständigen Beschreibung des Farbensehens.

Bei Adaptation der Rezeptoren *P*" und *D*" an 575 nm (Elementargelb) oder 505 nm (Elementargrün) verändert sich *die Form* der Farbarttafel nicht. Nur die Null-Koordinatenachsen verschieben sich und deuten eine Verschiebung der Elementarfarben an. Die Farbarttafel ist also *invariant* gegenüber dem hier dargestellten *Schema der Adaptation*, bei der sich die adaptierten Rezeptorempfindlichkeiten *P*" und *D*" durch Addition oder Subtraktion der Hellempfindlichkeit *U*" ergeben. Mit der Definition der *RG*- und *JB*-Sättigungskoordinaten:

$$a' = \log (P''/U'')$$
 $b' = \log (U''/N'')$

ergibt sich für die Farbumstimmung vom Umfeld *n* zum Umfeld *m* eine reine Translation, vgl. Buntheitsdefinition in Bild 4_12 auf Seite 91:

$$a' - a'_n = a' - a'_m$$

 $b' - b'_n = b' - b'_m$

4.20 Empfindlichkeiten und unsymmetrische J''-Sättigungen

Bild 4_63 zeigt die Rezeptorempfindlichkeiten für zwei RG-Adaptationszustände 575 nm (*oben links*) und 505 nm (*oben rechts*) bei konstantem JB-Adaptationszustand 505 nm. Die zugehörigen *unsymmetrischen JB*-Sättigungen (*unten links und rechts*) ergeben sich als logarithmischer Quotient der Rezeptor-Empfindlichkeiten U" und T" mit J". Für J" gilt:

$$\log J'' = 0.5 [\log N'' + \log U''] = 0.5 [0.5 (\log T'' + \log U'') + \log U''] = 0.25 \log T'' + 0.75 \log U''$$

Bei Adaptation der Rezeptoren P'' und D'' an 505 nm (Elementargrün) oder 575 nm (Elementargelb) verändert sich *die Form* der Sättigung als Funktion der Wellenlänge λ nicht. Nur die Nullpunkte verschieben sich und deuten neue Elementarfarben an, über die noch diskutiert wird.

Bild 4_64 zeigt Rezeptorempfindlichkeiten für zwei *RG*-Adaptationszustände 575 nm (*oben links*) und 505 nm (*oben rechts*) bei konstantem *JB*-Adaptationszustand 505 nm. Die zugehörigen *unsymmetrischen JB*-Sättigungen (*unten links und rechts*) ergeben sich als logarithmischer Quotient der Rezeptor-Empfindlichkeiten *U*" oder *T*" mit *J*".

Bei Adaptation der Rezeptoren P'' und D'' an 505 nm (Elementargrün) oder 575 nm (Elementargelb) verändert sich *die Form* der *RG*-Sättigung als Funktion der Wellenlänge λ nicht. Nur die Nullpunkte verschieben sich und deuten neue Elementarfarben an, über die noch diskutiert wird.

Die Unsymmetrie der *JB*-Sättigung ist eine bekannte Erfahrung aus der Skalierungs-Farbmetrik. Für Schwellen gilt die Unsymmetrie wahrscheinlich nicht, in Bild 4_69 auf Seite 143 wird das entsprechende Modell entwickelt.

Bild 4_65 Unsymmetrische U''J''**-Farbarttafel** 9470_2, 9471_2 Logarithmische *unsymmetrische* Farbarttafel von adaptierten Rezeptoren; *eine RG*-Sättigung log (P''/U'') *sowie zwei JB*-Sättigungen $-\log (T''/J'')$ und log (U''/J''); vollständige *RG*-Adaptation an $\lambda = 575$ nm (*links*) und $\lambda = 505$ nm (*rechts*); Modell mit Beitrag von 0,02 *T* zu *P* und 0,02 *P* zu *T*

Bild 4_65 zeigt die logarithmische *unsymmetrische* Farbarttafel von adaptierten Rezeptoren. *Eine RG*-Sättigung log (P'' / U'') und *zwei JB*-Sättigungen log (T'' / J'') ($\lambda < 505$ nm) und log (U'' / J'') ($\lambda > 505$ nm) werden als Koordinatenachsen benutzt. Bei vollständiger *RG*-Adaptation an $\lambda = 575$ nm (*links*) und $\lambda = 505$ nm (*rechts*) bleibt wieder die *Form* der Farbarttafel erhalten. Das Modell benutzt einen Beitrag von 0,02 *T* zu *P* und 0,02 *P* zu *T*. Die *J*-Sättigungen sind jetzt kleiner als die *B*-Sättigungen entsprechend der Erfahrung in der Skalierungs-Farbmetrik. Als "Gegenfarbe" zu 575 nm ergibt sich im Bild links eine Wellenlänge um 410 nm, die noch nicht der Elementarfarbe *B* ($\lambda = 475$ nm) entspricht.

Bild 4_66Unsymmetrische *U''J''N''*-Farbarttafel

9470_3

Logarithmische unsymmetrische Farbarttafel von Rezeptoren mit *zwei RG*-Sättigungen log (P''/U'') + log (T''/N'') und log (P''/U'') sowie *zwei JB*-Sättigungen log (J''/T'') und log (U''/J''); vollständige Adaptation an $\lambda = 505$ nm; Modell mit Beitrag von 0,02 *T* zu *P* und 0,02 *P* zu *T*

Bild 4_66 zeigt die logarithmische **unsymmetrische** Farbarttafel von adaptierten Rezeptoren. *Zwei RG*-Sättigungen log (P''/U'') + log (T''/N'') und log (P''/U'') sowie *zwei JB*-Sättigungen –log (T''/J'') und log (U''/J'')definieren die Koordinaten. Eine vollständige *RG*-Adaptation an $\lambda = 575$ nm ist angenommen. Die Farbarttafel ist mit dem Beitrag von 0,02 *T* zu *P* und 0,02 *P* zu *T* berechnet. Anstelle von Bild 4_65 wird im *B*-Bereich ($\lambda < 505$ nm) die Sättigungsaddition log (T'' / N'') zu log (P'' / U'') angenommen. Dies entspricht einer *Dehnung* der Farbtafel für Wellenlängen kleiner 505 nm zum Rot hin. Diese unsymmetrische Farbarttafel ähnelt sehr der Farbarttafel (a', b'), die zum CIELAB-Farbenraum gehört. Die Elementarfarben *J* ($\lambda = 575$ nm) und *B* ($\lambda = 475$ nm) liegen jetzt gegenüber auf dem Schnittpunkt der vertikalen Achse mit dem Spektralfarbenzug. Die Elementarfarben *G* ($\lambda = 505$ nm) und *R* liegen auf dem Schnittpunkt der horizontalen Achse mit dem Spektralfarbenzug.

Die Lage des Farborts von "Unbunt" bleibt zunächst offen. Die **unsymmetri**schen JB-Sättigungen mit kleinem Gewicht für " J" und großem Gewicht für " B" lassen eine Verschiebung zum B hin erwarten. Wenn der Farbort von Unbunt nicht im Schnittpunkt der Achsen liegt, sondern zum " B" hin verschoben ist, so bilden die Farborte von Elementarrot und Elementargün in der Nähe von Unbunt einen stumpfen Winkel. Genau diese Eigenschaft zeigen alle experimentellen Ergebnisse, vgl. zum Beipiel viele experimentelle Ergebnisse im BAM-Forschungsbericht Nr. 115 (*Richter*), 1985.

4.21 Farbunterscheidung und Umfeldleuchtdichte

Bild 4_67 Umbuntsignale, -Unterscheidung, Umfeld 9381_5, 9381_6 Signalfunktionen Q^* als Funktion der Infeldleuchtdichte $x = \log L$ bei drei Umfeldleuchtdichten $L_u = 10$, 100 und 1000 cd/m² (*links*) sowie zugehörige Leuchtdichte-Unterscheidungen $L/\Delta L$ (*rechts*)

Bild 4_67 zeigt die Signalfunktionen Q^* als Funktion der Infeldleuchtdichte $x = \log L$ bei drei Umfeldleuchtdichten $L_u = 10$, 100 und 1000 cd/m² (*links*), die mit *D* (*dunkel*), *U* und *H* (*hell*) bezeichnet sind, sowie zugehörige Leuchtdichte-Unterscheidungen $L / \Delta L$ (*rechts*).

Die S-förmigen Signalamplituden nehmen mit der Umfeldleuchtdichte sowohl zum Schwarz als auch zum Weiß hin zu. Die Farbe Schwarz erscheint mit wachsender Umfeld- bzw. Szenenleuchtdichte schwärzer, entsprechend erscheint Weiß weißer. Die Zunahme erfolgt mit einer Potenzfunktion $(L_u/L_{uo})^{1/6}$. Der Referenzzustand L_{uo} wird meist mit 100 cd/m² angenommen. Bei einer Erhöhung der Umfeldleuchtdichte um den Faktor 10 ergibt sich eine Zunahme der Leuchtdichte-Unterscheidung um 46 %. Entsprechende Daten ergeben sich aus Bild 4_67 (*rechts*), das die Leuchtdichte-Unterscheidung als Funktion der Infeldleuchtdichte *L* bei drei Umfeldleuchtdichten L_u darstellt.

Bild 4_68 Buntsignale, -Unterscheidung, Umfeld 9380_5 bis 9380_8 Signalfunktionen Q^* als Funktion der Infeldleuchtdichte $x = \log L$ bei der Umfeldleuchtdichte $L_u = 100 \text{ cd/m}^2$ für *RG*- und *JB*-Gegenfarbenprozesse (*oben und unten links*) sowie zugehörige theoretische Leuchtdichte-Unterscheidungen $L / \Delta L$ (*oben und unten rechts*)

Bild 4_68 zeigt die Signalfunktionen Q^* als Funktion der Infeldleuchtdichte $x = \log L$ bei der Umfeldleuchtdichte $L_u = 100 \text{ cd/m}^2$ für *RG*- und *JB*- Gegenfarbenprozesse (*oben und unten links*) sowie die zugehörigen theoretischen Leuchtdichte-Unterscheidungen $L / \Delta L$ (*oben und unten rechts*).

Experimentelle Ergebnisse über Leuchtdichte-Unterscheidungen zeigen sowohl für rote und grüne als auch für **gelbe und blaue Farben** in erster Näherung die *gleiche* Unterscheidung wie für **unbunte Farben**. Der empfindlichere Prozeß *R* (*oben links*) und *J* (*unten links*) ist nicht meßbar. Als einzige Erklärung bietet sich an, daß die gegenfarbigen Prozesse extrem schnell gemittelt werden und dieses Mittel die Leuchtdichte-Unterscheidung bestimmt.

Das experimentelle Ergebnis einer **gleichen** Leuchtdichte-Unterscheidung im Vergleich zu Unbunt hat eine weitere wichtige Konsequenz. Dieses Ergebnis erscheint nur möglich, wenn die gegenfarbigen Sättigungen für jede Wellenlänge λ symmetrisch sind. Die unsymmetrischen *JB*-Sättigungen von Bild 4_64 auf Seite 138 scheiden daher weitgehend zur Beschreibung der Farbschwellen aus.

In Bild 4_68 (*oben und unten links*) ist jeweils die *mittlere Summe* aus den beiden Gegenfarbenprozessen in den Farben Rot-Grün bzw. Gelb-Blau dargestellt. Diese mittlere Summe liegt für dunkle Infeldfarben geringfügig *über* der weißschwarzen Kurve für Unbunt und für helle Infeldfarben geringfügig *unter* der entsprechenden Kurve für Unbunt. Dies entspricht ebenfalls unseren experimentellen Messungen über Leuchtdichte-Unterscheidung für aneinandergrenzende Muster und Beobachtungszeiten größer als 2 s.

Mit zunehmender Sättigung der gegenfarbigen Prozesse, hier p = 0.5 bei R-Gund p = 1.0 bei J-B, wird die Steigung der Signalfunktion (gemittelte Summe) im Arbeitspunkt geringer im Vergleich zur Steigung der weiß-schwarzen Kurve für Unbunt. Mit zunehmender Sättigung ist daher eine *Abnahme* der Leuchtdichte-Unterscheidung im Arbeitspunkt zu erwarten. Dieser Einfluß wird bei kurzzeitiger Darbietung (0,1 s) und bunten Farben sehr groß.

Vorläufige experimentelle Ergebnisse zeigen, daß bei kurzzeitiger Darbietung (0,1 s) die Farbunterscheidung etwa folgenden Verlauf ergibt:

- Für Farben *dunkler* als das Umfeld folgt die Farbunterscheidung der Kurve für unbunte Farben.
- Für Farben *heller* als das Umfeld folgt die Farbunterscheidung der Kurve für die bestimmende Farbe, z. B. für Gelb der (linken) gelben Kurve.
- Mit zunehmender Sättigung der Farben verschiebt sich daher das Maximum der Unterscheidung zu dunkleren Farben im Vergleich zum Umfeld.
- Das Maximum der Unterscheidbarkeit nimmt mit zunehmender Sättigung ab.

Eine Einordnung dieser Ergebnisse in eine Theorie des Farbensehens ist bisher unbekannt.

4.22 Experimentelle Leuchtdichte- und Buntschwellen

Bild 4_69 zeigt die Rezeptorempfindlichkeiten für zwei *RG*-Adaptationszustände 575 nm (*links*) und 505 nm (*rechts*) bei konstantem *JB*-Adaptationszustand 505 nm. Die konstruierten *symmetrischen JB*-Sättigungen (*links und rechts*) ergeben sich als logarithmischer Quotient der Rezeptoren-Empfindlichkeiten *P*", *D*" oder *T*" mit *U*" oder *J*". Die entsprechende Farbarttafel ist bereits in Bild 4_65 auf Seite 139 dargestellt. Sie benutzt als *JB*-Sättigung die im *B* großen und im *J* kleinen Sättigungen, die jetzt eine *symmetrische* Funktion der Wellenlänge sind, abweichend von Bild 4_64 auf Seite 138.

Bei Adaptation der Rezeptoren P'' und D'' an 505 nm (Elementargrün) oder 575 nm (Elementargelb) verändert sich *die Form* der *RG*-Sättigung als Funktion der Wellenlänge λ nicht. Nur die Nullpunkte verschieben sich und deuten neue Elementarfarben an, über die bereits diskutiert wurde. Über eine mögliche Änderung der *JB*-Sättigung mit der Adaptation liegen keine Angaben vor. In Bild 4_69 wird eine Änderung des Umfelds von Elementargrün nach Unbunt angenommen. Hier wird die *JB*-Sättigung wahrscheinlich wie dargestellt nicht beeinflußt. Bei einem Übergang zu den *spektralen* Umfeldern Elementargelb (575 nm) oder Elementarblau (475 nm) sind größere Änderungen zu erwarten.

Die **Konstruktion der Symmetrie** der *RG*-Sättigung **und** der *JB*-Sättigung für Schwellen wird durch Experimente über Farbschwellen für bunte und unbunte Farben als Funktion der Leuchtdichte erzwungen. Für die Stufung ist die Konstruktion einer Symmetrie weder möglich und sinnvoll.

4.23 Hell- sowie Buntschwellen und Leuchtdichte

Bild 4_70Unbunt- und Buntschwellen als Funktion von Y 8190_7 Experimente über Hell- und Buntschwellen als Funktion der Leuchtdichte bei Betrachtungszeiten größer 2 s im grauen Umfeld mit weißem Rahmen; Ausgleichsrechnung liefert gleichartige Funktion zur Beschreibung

Bild 4_70 zeigt experimentelle Ergebnisse über Hell- und Buntschwellen als Funktion der Leuchtdichte bei Betrachtungszeiten größer 2 s im grauen Umfeld mit weißem Rahmen. Für die unbunten Infeldfarben wurden über mehr als drei logarithmische Einheiten die *NW*-Hellschwellen sowie die *RG*- und *JB*-Buntschwellen mit sechs Beobachtern gemessen (*Daten: Richter, 1985, vgl. Bild*).

Die Umfeldleuchtdichte L_u des grauen Umfelds betrug 100 cd/m² und die des weißen Rahmens das Sechsfache. Der Hellbezugswert von Grau ist im Bild auf $Y_u = 17$ normiert, im Vergleich zum Hellbezugswert $Y_w = 100$ des weißen Rahmens im Gesichtsfeld. Drei völlig verschiedene experimentelle Ergebnisse sind dargestellt: die Unterscheidung des Hellbezugswerts ΔY , das Produkt aus Hellbezugswert und R-G-Farbartdifferenz ($\Delta a \cdot Y$) sowie das entsprechende
Produkt für die J-B-Farbwertdifferenz ($\Delta b \cdot Y$). Die drei gemittelten experimentellen Kurven sind bis auf eine vertikale Normierung identisch, vgl. Bild.

Im ersten Fall bleibt experimentell die unbunte Farbart konstant, und nur der Hellbezugswert der beiden Teilfelder zeigt an der Schwelle eine Differenz, im zweiten und dritten Fall bleibt experimentell der Hellbezugswert der beiden Teilfelder konstant, nur die Farbarten der beiden Halbfelder unterscheiden sich in *RG*- bzw. *JB*-Richtung an der Schwelle.

Die Steigung ist für alle Infeldfarben heller als das Umfeld, weitgehend gleich 1 (optimaler Wert 1,06). Die Steigung nimmt erst für dunkle Farben nach Schwarz hin ab. Im Vergleich zu Skalierungsexperimenten mit der Steigung 2/3 ergibt sich ein gravierender Unterschied. Die Steigung 1 bedeutet für die Praxis, daß zum Beispiel die Buntschwellen-Ellipsen weitgehend unabhängig vom Hellbezugswert sind. Es folgt mit der Steigung m = 1 (experimentell !):

log $(\Delta a \cdot Y) = m \log Y + \text{const.}$ oder: log $(\Delta a) + \log Y = \log Y + \text{const.}$ oder: $\Delta a = \text{const.}$ für Richtung R-Gentsprechend: $\Delta b = \text{const.}$ für Richtung J-B

Bild 4_71*RG***-Buntschwellen und Farbartdifferenz** 8240_1 Buntschwellen als Funktion der Farbartdifferenz $(a - a_n) = (x/y - x_n/y_n)$ für Farben mit gleichem Hellbezugswert *Y*

Bild 4_71 zeigt *RG*-Farbschwellen für Infeldfarben, die in ihrem Hellbezugswert mit dem des grauen Umfelds übereinstimmen und nur in der Sättigung $(a - a_n)$ von *G* über Unbunt nach *R* variieren. Die Farbartdifferenz Δa an der Schwelle erhöht sich von Unbunt aus sowohl nach *R* als auch nach *G* als Funktion der Sättigung, wie bereits in Bild 4_5 auf Seite 85 dargestellt. Die Koordinate:

$$a'' = (a - a_n) / (1 + 0.5 |a - a_n|)$$

eignet sich zur Beschreibung der Farbartdifferenz an der Farbschwelle, d. h., $\Delta a''$ ist konstant für die Schwelle. Für die *JB*-Farbschwelle gilt eine entsprechende Gleichung mit der Koordinate b''.

Die Farbartkoordinaten (a'', b'') wurden bereits in Bild 4_22 auf Seite 100 bis Bild 4_25 auf Seite 102 zur Beschreibung der Buntschwellen verwendet.

Farbschwellen-Formel LABJNDS 1985 (JND = just noticeable difference) $\Delta E_{JND}^{*} = Y_{0} [(\Delta Y)^{2} + (a_{0} \Delta a'' \cdot Y)^{2} + (b_{0} \Delta b'' \cdot Y)^{2}]^{1/2} / (s + dY^{e})$ $a = x/y \quad a_{n} = x_{n}/y_{n} \quad b = -0.4 z/y \quad b_{n} = -0.4 z_{n}/y_{n}$ $a'' = a_{n} + (a - a_{n}) / (1 + 0.5 |a - a_{n}|) \quad n = D65 \text{ oder } A \text{ (Umfeld)}$ $b'' = b_{n} + (b - b_{n}) / (1 + 0.5 |b - b_{n}|)$ $Y = (Y_{1} + Y_{2}) / 2 \quad \Delta Y = Y_{1} - Y_{2} \quad \Delta a'' = a_{1}'' - a_{2}'' \quad \Delta b'' = b_{1}'' - b_{2}''$ $s = 0,0170 \quad d = 0,0058 \quad e = 1,0$ $a_{0} = 1,0 \quad b_{0} = 1,8 \quad Y_{0} = 1,5 \quad Umfeld D65$ $a_{0} = 1,0 \quad b_{0} = 1,7 \quad Y_{0} = 1,0 \quad Umfeld A$

Tabelle 4_1 Farbschwellen-Formel LABJNDS 1985 7351_7 Formeln zur Beschreibung von Buntschwellen als Funktion des Infeldhellbezugswerts*Y* und der Farbart (*x*, *y*) bzw. (*a*, *b*) bzw. (*a''*, *b''*)

Tabelle 4_1 zeigt Formeln zur Beschreibung der Schwellen-Experimente (vgl. *Richter*, 1985). Nach diesen Formeln gilt:

Die *Farbartdifferenz* Δa bzw. Δb ist konstant für genügend große Hellbezugswerte (z. B. Infeldhellbezugswert Y größer Umfeldhellbezugswert $Y_n =$ 17). Die Ellipsengröße ändert sich daher nicht mit dem Hellbezugswert in diesem Bereich. Bei Verkleinerung des Hellbezugswerts zum Schwarz hin nimmt die Ellipsengröße zu.

Die Hellbezugswertdifferenz ΔY ist proportional dem Infeldhellbezugswert Y für genügend große Hellbezugswerte (z. B. Infeldhellbezugswert Y größer Umfeldhellbezugswert $Y_n = 17$). Diese Eigenschaft ist identisch mit dem Gesetz von Weber-Fechner.

5 Reproduktionstechnik und Normfarbwerte

In diesem Kapitel werden Grundlagen der Reproduktionstechnik sowie die farbmetrische Kennzeichnung der Farbwiedergabe in der Farbfotografie, im Mehrfarbendruck und im Farbfernsehen behandelt. Zur Kennzeichnung der Farbwiedergabe sind die Farbmessung und die Normfarbwerte der Grund- und Mischfarben von entscheidender Bedeutung.

5.1 Reproduktionsverfahren

Die Reproduktionsverfahren basieren auf unterschiedlichen Grundfarben sowie additiven und subtraktiven Farbmischverfahren.

5.1.1 Reproduktion: Elementar-, Grund- und Mischfarben

Das Auge und die Reproduktionsverfahren Farbfernsehen, Farbfilm, Farbdruck, Farbkopie und Farbgrafik arbeiten mit unterschiedlichen Grundfarben.

Bild 5_1 zeigt die Elementarfarben des visuellen Systems in einem symmetrischen Elementarfarbkreis, der aus den vier Elementarfarben Gelb J, Rot R, Blau B und Grün G aufgebaut ist.

Bild 5_2Bunttonkreis sechsteilig 8670_5 Sechsteiliger Bunttonkreis des Reproduktionsbereichs (Farbgrafik, Farbfilm, Farbfernsehen, Mehrfarbendruck)

Bild 5_2 zeigt den sechsteiligen Bunttonkreis der Reproduktionsbereiche Farbgrafik, Farbfotografie, Farbfernsehen und Mehrfarbendruck. Die technische Reproduktion benutzt drei von diesen sechs Farben (Drei-Farbenfernsehen, Drei-Farbenfilm, Drei-Farbendruck). Nur im Sieben-Farbendruck werden die sechs bunten Grundfarben und Schwarz direkt verwendet.

Bild 5_3 zeigt die in den verschiedenen Reproduktionsbereichen verwendeten bunten Grund- und Mischfarben.

Bild 5_4Grundfarben: Drei- undSechs-Buntfarbendruck8670_7Drucktechnik mit drei und sechs buntenGrundfarben (Drei- und Sechseck);vergrößerter Farbumfang in der Drucktechnik mit sechs bunten Grundfarben

und Sechseck). Im Sieben-Farbendruck mit sechs bunten Grundfarben ist ein vergrößerter Farbumfang möglich.

Bild 5_5 Grundfarben: Sieben- und Vier-Farbendruck 8670_8 Sechs bunte Druckfarben und Schwarz im Sieben- und Vier-Farbendruck; vergrößerter Farbumfang mit Sieben-Farben-Drucktechnik

Bild 5_5 zeigt die sechs bunten Druckfarben und Schwarz im Sieben- und Vier-Farbendruck. Durch Aufhellung der vier hellen Farben (Y, M, C) und Verdunklung der vier Mischfarben (O, L und V) wird anschaulich der vergrößerte Farbumfang in der Sieben-Farben-Drucktechnik demonstriert. Ein genaues Bild kann nur durch direkte Verwendung der Grundfarben des Sieben-Farbendrucks erzeugt werden, was hier in diesem Buch aus Kostengründen nicht möglich war.

5.1.2 Reproduktion: additive und subtraktive Farbmischung

Das Farbfernsehen und der Farbmonitor sind die wichtigsten technischen Anwendungen der additiven Farbmischung. Auf einem Farbfernsehschirm liegen etwa 1,2 Millionen Rasterpunkte O, L und V alternierend nebeneinander. Leuchten alle drei voll auf, so erscheint ein weißer Bildschirm.

Bild 5_6 zeigt die Mischung von drei additiven Farben Orangerot O, Laubgrün L und Violettblau V zu Weiß W im Farbfernsehen mit einer Lochmasken-Röhre.

Bild 5_7 Additive Zweifarbenmischungim Farbfernsehen8671_6Farbmischung von zwei additiven FarbenOrangerot O und Laubgrün L zu Gelb Y imFarbfernsehen mit Lochmasken-Röhre

Bild 5_7 zeigt die Mischung von zwei additiven Farben Orangerot O und Laubgrün L zu Gelb Y im Farbfernsehen mit einer Lochmasken-Röhre.

Bild 5_8Additive Zweifarbenr	nischung
im Farbfernsehen	8671_7
Farbmischung von zwei additive	en Farben
Orangerot O und Violettblau V	zu
Magentarot M im Farbfernseher	ı mit
Schlitzmasken-Röhre	

Bild 5_8 zeigt die Mischung von zwei additiven Farben Orangerot *O* und Violettblau *V* zu Magentarot *M* im Farbfernsehen mit Schlitzmasken-Röhre.

Bild 5_9Additive Zweifarbenmischungim Farbfernsehen8671_8Farbmischung von zwei additiven FarbenLaubgrün L und Violettblau V zu CyanblauC im Farbfernsehen mit Schlitzmasken-Röhre

Bild 5_9 zeigt die Mischung von zwei additiven Farben Laubgrün *L* und Violettblau *V* zu Cyanblau *C* im Farbfernsehen mit Schlitzmasken-Röhre.

Neben der additiven Farbmischung wird im Bereich Farbfotografie und Mehrfarbendruck die subtraktive Farbmischung angewandt.

Bild 5_10 Subtraktive Farbmischung imFarbdiafilm8671_1Subtraktive Farbmischung aus Gelb Y, Magentarot M und Cyanblau C in drei Schichten im Dreifarben-Diafilm

Bild 5_10 zeigt die drei subtraktiven Farben Gelb Y, Magentarot M und Cyanblau C in drei Schichten im Dreifarben-Diafilm.

Bild 5_11 Subtraktive Farbmischung imDrei-Farbendruck8671_2Subtraktive Farbmischung ausGelb Y,Magentarot M und Cyanblau C in dreiSchichten in der Drei-Farben-Drucktechnik

Bild 5_11 zeigt die drei subtraktiven Farben Gelb *Y*, Magentarot *M* und Cyanblau *C* in drei Schichten in der Drei-Farben-Drucktechnik. Diese Farben sind weitgehend mit denen aus dem Bereich Farbfotografie identisch.

Bild 5_12Subtraktive Farbmischung imVier-Farbendruck8671_3Unbuntaufbau mit Vierfarbenmischung ausGelb Y, Magentarot M, Cyanblau C undSchwarz N in drei Schichten in der Vier-Farben-Drucktechnik

Bild 5_12 zeigt den Unbuntaufbau mit vier Farben Gelb *Y*, Magentarot *M*, Cyanblau *C* und Schwarz *N* in drei Schichten in der Vier-Farben-Drucktechnik.

Bild 5_13Farbschichten imVier-Farbendruck8671_4Farbschichten auf dem Papier zur Erzeu-
gung der sechs bunten Farben und Schwarz
im der Vier-Farben-Drucktechnik

Bild 5_13 zeigt die Druckfarbschichten auf dem Papier zur Erzeugung der sechs bunten Farben und Schwarz im der Vier-Farben-Drucktechnik. An jeder Bildstelle werden nur zwei bunte Druckfarben verwendet, die eventuell noch mit Schwarz überdruckt werden. Schwarz wird in dieser Drucktechnik also nicht aus *Y*, *C* und *M* erdruckt, sondern es wird direkt die preiswertere Druckfarbe Schwarz *N* für unbunte Bildstellen verwendet.

5.2 Farbwiedergabe in der Farbfotografie

Im entwickelten Farbfilm gibt es drei farbige Filmschichten, Gelb Y (G90J), Magentarot M (R30B) und Cyanblau C (B30G), deren Farbstoffkonzentrationen durch die Belichtung inklusive Entwicklung gesteuert werden.

Bild 5_14Farbdia-Filmschichten unbelichtet und belichtet $8690_5, 8690_6$ Farbdia-Filmschichten Gelb Y (G90J), Magentarot M (R30B) und Cyanblau C (B30G)unbelichtet mit Gelbfilterschicht (oben links) und belichtet (oben rechts)

Im **Bild 5_14** sieht man links einen schematischen Schnitt durch den unentwikkelten Farbdiafilm. Man erkennt drei Schichten. Die oberste wird bei einer bestimmten Belichtung Gelb Y (G90J), ist also blauempfindlich, die zweite wird Magentarot M (R30B), ist also grünempfindlich, und die dritte wird Cyanblau C (*B*30*G*) und ist daher rotempfindlich. Das beim unentwickelten Film erkennbare Gelbfilter soll verhindern, daß blaues Licht noch Einfluß auf die überwiegend grün- und rotempfindlichen, darunter liegenden Schichten hat. Die Farbschichten bilden sich in der rechts gezeigten Weise nur aus, wenn man bestimmte Farben aufnimmt.

In den drei Schichten werden die Konzentrationen der drei Farbstoffe Cyanblau C (B30G), Magentarot M (R30B) und Gelb Y (G90J) durch die Belichtung inklusive Entwicklung gesteuert. Im Idealfall haben die drei Schichten Transmissionsfaktoren von Rechteckform, sie lassen jeweils zwei Drittel des Spektrums vollständig und den dritten Teil mehr oder weniger durch, vgl. linke Seite im **Bild 5_15**. Ihr Aussehen variiert dann z. B. bei der ersten Schicht von klar durchsichtig bis zum bunten Gelb Y (G90J), vgl. Bild 5_15 (*drei Bilder links*).

Die Transmissionsfaktoren reeller Filmschichten, vgl Bild 5_15 (*drei Bilder rechts*), haben einen mehr kontinuierlichen Verlauf, der eine rohe Approximation an den rechteckförmigen Verlauf darstellt. Die in Bild 5_15 dargestellten Transmissionsfaktoren gehören zu dem Modellfilm von DIN 6169 Teile 7 und 8.

Die hier gezeigten Transmissionsfaktoren von Cyanblau C (B30G), Magentarot M (R30B) und Gelb Y (G90J) führen in der Kombination zu sogenannten Grau-Äquivalenttransmissionen zwischen 1,000 (klar durchsichtig) und 0,001 (Schwarz).

Bild 5_16 zeigt die Farborte der Optimal-Film-Testfarben mit den rechteckförmigen Transmissionsfaktoren, vgl. Bild 5_15 (*drei Bilder links*). Es ist zu beachten, daß im Film die helleren Farben Cyanblau C (B30G), Magentarot M(R30B) und Gelb Y (G90J) Grundfarben sind und die dunkleren Farben Orangerot O (J80R), Laubgrün L (G10J) und Violettblau V (R80B) Mischfarben.

Bild 5_17 Reelle Film-Testfarben in Normfarbtafel (x, y) 8331_2 Reelle Film-Testfarben nach DIN 6169 in der Normfarbtafel (x, y)

Bild 5_17 zeigt die Farborte der reellen Film-Testfarben mit den kontinuierlichen Transmissionsfaktoren, vgl. Bild 5_15 (*drei Bilder rechts*). Wenn man für die reellen Filmfarben Hellbezugswerte Y berechnet, so ergibt sich, daß die Grundfarben Gelb Y (G90J), Magentarot M (R30B) und Cyanblau C (B30G) relativ zu Weiß einen kleineren Hellbezugswert haben als für die Optimal-Film-Testfarben. Ebenso werden Orangerot O (J80R), Laubgrün L (G10J) und Violettblau V (R80B) wesentlich dunkler wiedergegeben als mit einem farbvalenzmetrisch idealen Film mit rechteckigen Transmissionsfaktoren oder mit dem Farbfernsehen. Betrachtet man in Bild 5_17 den geometrischen Abstand in der Farbtafel von Unbunt, so ist die Fläche des Filmfarbdreiecks OLV größer als beim Fernsehen, vgl. Bild 5_28 auf Seite 165. Deshalb können im Film bei dunklen Farben größere Buntheiten erzielt werden. Allgemein gilt, daß der Farbfilm helle bunte Farben weniger gut wiedergeben kann als das Farbfernsehen, während der Film bei dunklen Farben dem Fernsehen etwas überlegen ist. Entsprechendes gilt für Farbmonitore.

5.3 Farbwiedergabe im Mehrfarbendruck

Im Mehrfarbendruck werden im Offsetverfahren drei Farbstoffe mit unterschiedlicher Rastergröße auf weißes Papier z. T. übereinander und nebeneinander gedruckt. Die Reflexionsfaktoren der drei Farbstoffe entsprechen für unterschiedliche Rastergröße weitgehend den in Bild 5_15 dargestellten Transmissionsfaktoren für Filmfarbstoffe. Daher gelten auch im Mehrfarbendruck weitgehend die in Abschnitt "Farbwiedergabe in der Farbfotografie" dargestellten Ergebnisse.

Bild 5_18Subtraktive Grundfarben in Normfarbtafel (x, y) 8331_6 Subtraktive Grundfarben C, M und Ysowie die Mischfarben O, L und V des Standard-Mehrfarbendrucks in der Normfarbtafel (x, y)

Bild 5_18 zeigt die subtraktiven Grundfarben C, M und Y sowie die Mischfarben O, L und V des Standard-Mehrfarbendrucks in der Normfarbtafel (x, y).

Grund- und Mischfar	ben des N	Normfarbd	lruck-Prozess	es nach D	IN 16 539
Grundfarbe oder	Normfai	rbwert-	Normfai	rbwerte	
Mischfarbe und	anteile				
Bezeichnung	x	У	X	Y	Z
drei subtraktive Grund	farben:				
C Cyanblau	0,1553	0,1967	16,92	21,44	70,62
M Magentarot	0,4675	0,2314	33,88	16,77	21,82
Y Gelb	0,4399	0,4925	68,13	76,28	10,48
drei subtraktive Mischj	farben:				
O Orangerot	0,6152	0,3226	30,51	16,00	3,08
L Laubgrün	0,1958	0,5256	6,05	16,23	8,06
V Violettblau	0,1807	0,1009	4,86	2,72	19,33
NLC (Weiß)	0,3101	0,3162	98,07	100,00	118,22

Tabelle 5_1 Grund- und Mischfarben Normfarbdruck-Prozeß7311_3Grund- und Mischfarben des Norm-Druckprozesses nach DIN 16 539 mit der "Europäischen Farbskala nach dem Offsetdruckprozeß; Normdruckfarben"7311_3

Tabelle 5_1 zeigt die Grund- und Mischfarben des Norm-Druckprozesses, der nach DIN 16 539 mit der "Europäischen Farbskala nach dem Offsetdruckprozeß; Normdruckfarben" arbeitet.

Bild 5_19 Subtraktive Farbmischung imDrei-Farbendruck8671_2Subtraktive Farbmischung aus drei Farb-
druckschichten Gelb Y, Magentarot M undCyanblau C in drei Schichten in der Drei-
Farben-Drucktechnik

Im **Bild 5_19** sind die drei Grundfarben Gelb Y (*G*90*J*), Cyanblau *C* (*B*30*G*) und Magentarot *M* (*R*30*B*) sowie die primären Mischfarben Laubgrün *L* (*G*10*J*), Violettblau *V* (*R*80*B*) und Orangerot *O* (*J*80*R*) sowie die sekundäre Mischfarbe Schwarz *N* dargestellt. Zusammen mit der Papierfarbe Weiß ergeben sich insgesamt sechs bunte und zwei unbunte Farben.

Bild 5_20 Farbpaletten $N^* = 0$ im Farbendruck 8414_1, 8424_1, 8434_1 Mehrfarben-Offsetdruck der Grundfarben für jeweils 16 gleichabständige Farbstufen mit Schwarzheit $N^* = 0$:

- Magentarot *M* und Gelb *Y* (oben links),
- Cyanblau C und Magentarot M,
- Gelb Y und Cyanblau C (unten links)

In **Bild 5_20** wird der Übereinanderdruck der Druckfarben Magentarot *M* und Gelb *Y* (*oben links*), Cyanblau *C* und Magentarot *M* (*oben rechts*) sowie Gelb *Y*

und Cyanblau *C* (*unten links*) gezeigt. Das Symbol * bedeutet farbmetrisch gleichabständige (quadratische) Stufung.

Bei den Rasterfeldern mit den Indizes "F" werden 100 % der weißen Papierfläche bedruckt. Die Indizes beschreiben *Mengenvariationen der Grundfarben* Cyanblau *C*, Magentarot *M* und Gelb *Y* im *Druckergebnis*.

Durch Verlaufen der Druckfarben beim Andruck der Druckwalze auf die immer etwas rauhe Papieroberfläche tritt zwischen Kopierfilm und Druckergebnis eine *relative Rastervergrößerung um 20 %* auf. Die Rastervergrößerung ist bei üblichen *Punktrastern*, wo sich die Punkte radial (in *allen* radialen Richtungen) verbreitern, größer als bei *Linienrastern*, die sich *nur in zwei Richtungen* verbreitern können. Entsprechend unseren farbmetrischen Überlegungen muß die Rasterflächendeckung im *Druckergebnis* bei üblichen Punktrastern für die mittlere Graustufe (Index 7 oder 8) bei 75 % liegen. Diese *nichtlineare* Stufung ist durch das Symbol * gekennzeichnet. Bei einer Punktrasterverbreiterung um 20 % muß dann die Flächendeckung im Kopierfilm 55 % betragen, bei einer Linienrasterverbreiterung um 10 % muß sie entsprechend 65 % im Kopierfilm betragen.

Bild 5_21 Farbpaletten $C^* = 0$ und 8 im Farbendruck8444_1, 8445_1Mehrfarben-Offsetdruck der Grundfarben M und C für jeweils 16 Stufen:• ohne Überdruck der Grundfarbe Cyanblau $C^* = 0$ (oben links),

• mit Überdruck der Grundfarbe Cyanblau $C^* = 8$ (*oben rechts*)

Im konventionellen Mehrfarbendruck wird das Bild dreifarbig allein aus den bunten Grundfarben Gelb Y, Magentarot M und Cyanblau C aufgebaut. Diese Drucktechnologie zeigt **Bild 5_21** und heißt Buntaufbau. Das vorherige Bild 5_20 (mit M und Y oben links) wird hier erneut gezeigt und ist jetzt mit Cyanblau $C^* = 8$ (oben rechts) überdruckt. Die Bildfläche mit 16 × 16 Farben besteht also nur aus bunten Farben, und in der Nähe von $C^* = 8$, $M^* = 8$ und $Y^* = 8$ sollte Unbunt (Mittelgrau) entstehen. Die Drucktechnologie mit nur drei bunten Farben heißt Buntaufbau. Bild 5_21 ist in den quadratischen Buntfeldern im Buntaufbau aufgebaut, d. h., auch Mittelgrau ist hier nur aus C, M und Y erdruckt. Das graue Umfeld ist direkt mit der Druckfarbe Schwarz N und damit im Umbuntaufbau gedruckt. Damit wird im Bild eine Mischung von Bunt- und Unbuntaufbau verwendet.

Bild 5_22 Farbpaletten $N^* = 8$ im Farbendruck 8415_1, 8425_1, 8435_1 Mehrfarben-Offsetdruck der Grundfarben für jeweils 16 gleichabständige Farbstufen für Schwarzheit $N^* = 8$: • Magentarot *M* und Gelb *Y*,

• Cyanblau C und Magentarot M,

• Gelb *Y* und Cyanblau C

Neben diesem Buntaufbau des Bildes setzt sich zur Zeit eine neue Drucktechnologie, der sogenannte Unbuntaufbau, mehr und mehr durch. In dieser Technologie werden alle Unbuntwerte im Bild, soweit dies möglich ist, durch die Druckfarbe Schwarz gebildet. Alle Buntwerte werden dann durch Schwarz N und nur zwei bunte Druckfarben an verschiedenen Bildstellen jeweils eines der drei Paare M - Y, C - M und Y - C erzeugt. In **Bild 5_22** sind entsprechend die Farben von Bild 5_20 alle mit Schwarz N der mittleren Schwarzheit $N^* = 8$ überdruckt. Die Überdruckmöglichkeiten mit $N^* = 0, 1, 2, ..., F$ ergeben insgesamt 3×4096 Farben im Unbuntaufbau gegenüber "nur" 4096 im Buntaufbau ("nur" mit C, M und Y ohne N).

Die folgenden Bilder geben einen Überblick über die Soll-Hellbezugswerte im Mehrfarbendruck für die Farbreihe zwischen Weiß W und Schwarz N (Graureihe), die Reihen zwischen Druckfarbe (*C*, *M*, *Y*, *L*, *O*, *V*) und Schwarz N sowie zwischen Weiß W und Druckfarbe (*C*, *M*, *Y*, *L*, *O*, *V*). Es werden hier nur die Hellbezugswerte der wichtigsten Reihen dargestellt, damit das Prinzip der Berechnung erkennbar wird. Die Darstellung beschränkt sich auf 16stufige Farbheiten, z. B. N^* , C^* , M^* , Y^* , O^* , L^* und V^* .

Farbheit	Farbnur	nmer	Hellbezugswert	Farbheit	Farbnum	mer	Hellbezugswert
0* L* V*	n h*	d	$Y(Y_W = 81 \text{ Druck})$	0* L* V*	n h*	d	$Y(Y_L = 16 \text{ Dru})$
15,15,15	7 FFF*	4095	81·(81/81)	0,15, 0	2 0F0*	240	16 (81/81)
13,13,13	– DDD [*]	* 3549	81·(64/81)	0,13, 0	- 0D0*	208	16 ·(64/81)
11,11,11	– BBB*	3003	81·(49/81)	0,11, 0	- 0B0*	176	16 ·(4 9/81)
9, 9, 9	- 999*	2457	81.(36/81)	0, 9, 0	- 090*	144	16 (36/81)
7, 7, 7	8 777*	1911	81 · (25/81)	0, 7, 0	10 070*	112	16 (25/81)
5, 5, 5	- 555*	1365	81 · (16/81)	0, 5, 0	- 050*	80	16 (16/81)
3, 3, 3	- 333*	819	81 ·(9/81)	0, 3, 0	- 030*	48	16 ·(9/81)
1, 1, 1	- 111*	273	81 ·(4/81)	0, 1, 0	- 010*	16	16. (4/81)
0, 0, 0	0 000*	0	81 ·(2/81)	0, 0, 0	0 000*	0	81.(2/81)

Bild 5_23 Hellbezugswerte Farbreihen W-N, L-N 8590_1, 8590_8 Hellbezugswerte Y einer Graureihe W - N und der Reihe L - N, die eine 16stufige gleichabständige visuelle Stufung ergeben, im Mehrfarbendruck:

• Farbreihe *W* – *N* (*oben links*),

• Farbreihe L - N (oben rechts)

Bild 5_23 zeigt die Hellbezugswerte *Y* einer Graureihe W - N und der Reihe L - N, die eine 16stufige gleichabständige visuelle Stufung ergeben. Die Farbreihe W - N ist oben links und die Farbreihe L - N ist oben rechts dargestellt. Es wird angenommen, daß der Hellbezugswert des Papierweiß (weitgehend aufhellerfrei) bei 81 liegt. Dieser Wert hat sich zum Beispiel für einen Test-Druckprozeß ergeben, vgl. Tabelle 10_8 auf Seite 282. Das Bild zeigt an, daß bei quadratischer Stufung der Hellbezugswerte *Y* eine visuell gleichabständige Graureihe entsteht. Dies entspricht dem folgenden Zusammenhang zwischen Helligkeit L^* und Hellbezugswert *Y* für weißes Umfeld, den wir schon in Abschnitt 2.15.1 ab Seite 60 kennengelernt haben:

$$L_{\rm w}^{\star} = 100 \left(Y / 100 \right)^{1/2}$$

Der Hellbezugswert der Druckfarbe *N* liegt bei der Meßgeometrie $45^{\circ}/0^{\circ}$ in der Nähe von *Y* = 2.

Farbheit	Farbnun	nmer	Hellbezugswert
0* L* V*	n h*	d	$Y(Y_Y = 76 \text{ Druck})$
15,15, 0	3 FF0*	4080	76 ·(81 / 8 1)
13,13, 0	- DD0*	3536	76·(64/81)
11,11, 0	- BB0 *	2992	76 ·(49 / 8 1)
9, 9, 0	- 990*	2448	76 (36/81)
7, 7, 0	11 770*	1904	76 (25/81)
5, 5, 0	- 550*	1360	76 ·(16/81)
3, 3, 0	- 330*	816	76 ·(9 / 8 1)
1, 1, 0	- 110*	272	76 ·(4 / 8 1)
0, 0, 0	0 000*	0	81 ·(2/81)

Farbheit	Farbnummer	Hellbezugswert
0* L* V*	n h* d	$Y(Y_M = 17 \text{ Druck})$
15, 0,15	5 F0F* 3855	17.(81/81)
13, 0,13	- D0D* 3341	17.(64/81)
11, 0,11	- B0B* 2827	17.(49/81)
9, 0, 9	- 909* 2313	17.(36/81)
7, 0, 7	13 707* 1799	17·(25/81)
5, 0, 5	- 505* 1285	17.(16/81)
3, 0, 3	- 303* 771	17.(9/81)
1, 0, 1	- 101* 257	17·(4/81)
0, 0, 0	0 000* 0	81 ·(2/81)

Farbheit	Farbnum	mer	Hellbezugswert
0* L* V*	n h*	d	$Y(Y_C = 21 \text{ Druck})$
0,15,15	6 0FF*	255	21 · (81/81)
0,13,13	- 0DD*	221	21.(64/81)
0,11,11	- 0BB *	187	21 · (49/81)
0, 9, 9	- 099*	153	21.(36/81)
0, 7, 7	14077*	119	21·(25/81)
0, 5, 5	- 055*	85	21·(16/81)
0, 3, 3	- 033*	51	21 ·(9/81)
0, 1, 1	- 011*	17	21·(4/81)
0, 0, 0	0 000*	0	81.(2/81)

Bild 5_24 Hellbezug	swerte Farbreihen
Y, M, C–N	8590_5 bis 8590_7
Hellbezugswerte Y ve	on Farbreihen zwi-
schen Buntfarbe (Y, J	M, C) und Schwarz N
im Mehrfarbendruck:	
• Earbreibe $V = N(ak)$	on links)

• Farbreihe Y - N (oben links),

• Farbreihe M - N (oben rechts),

• Farbreihe C - N (unten links)

Bild 5_24 zeigt die Hellbezugswerte *Y* von Farbreihen zwischen Druckfarbe (*Y*, *M*, *C*) und Schwarz *N* mit ebenfalls quadratischer Stufung des Hellbezugswerts *Y* zur Erzeugung von visuell gleichabständigen Reihen. Die Farbreihe Y - N ist oben links, die Farbreihe M - N ist oben rechts und die Farbreihe C - N ist unten links dargestellt.

Farbheit	Fa	arbnun	nmer	Hellbezugswert
0* L* V*	n	h*	d	$Y(Y_Y = 76 \text{ Druck})$
15,15,15	7	FFF*	4095	76+5.(81/81)
15,15,13	_	FFD*	4093	76+5.(64/81)
15,15,11	_	FFB*	4091	76+5·(49/81)
15,15, 9	_	FF9*	4089	76+5(36/81)
15,15, 7	_	FF7*	4087	76+5.(25/81)
15,15, 5	_	FF5*	4085	76+5·(16/81)
15,15, 3	_	FF3*	4083	76+5·(9/81)
15,15, 1	_	FF1*	4081	76+5·(4/81)
15,15, 0	3	FF0*	4080	76+5·(0/81)

Farbheit	Fa	rbnun	ımer	Hellbezugswert
0* L* V*	n	h*	d	$Y(Y_M = 17 \text{ Druck})$
15,15,15	7	FFF*	4095	17+64 (81/81)
15,13,15	_	FDF*	4063	17+64 • (64/81)
15,11,15	_	FBF*	4031	17+64 (49/81)
15, 9,15	_	F9F *	3999	17+64 (36/81)
15, 7,15		F7F*	3967	17+64 (25/81)
15, 5,15		F5F*	3935	17+64 (16/81)
15, 3,15		F3F*	3903	17+64 (9/81)
15, 1,15		F1F*	3871	17+64·(4/81)
15, 0,15	5	F0F*	3855	17+64·(0/81)

Farbheit	Fa		nmer	Hellbezugswert
0* L* V*	n	h*	d	$Y(Y_C = 21 \text{ Druck})$
15,15,15	7	FFF*	4095	21+60 (81/81)
13,15,15	_	DFF*	3583	21+60 (64/81)
11,15,15	_	BFF*	3071	21+60 (49/81)
9,15,15	_	9FF*	2559	21+60 (36/81)
7,15,15		7FF *	2047	21+60 (25/81)
5,15,15		5FF *	1535	21+60 (16/81)
3,15,15		3FF*	1023	21+60 (9/81)
1,15,15		1FF*	511	21+60·(4/81)
0,15,15	6	0FF*	255	21+60·(0/81)

Bild 5_25 Hellbezugswerte Farbreihen W-Y, M, C 8590_2 bis 8590_4 Hellbezugswerte Y von Farbreihen zwischen Weiß W und Buntfarbe (Y, M, C) im Mehrfarbendruck:

- Farbreihe *W Y* (*oben links*),
- Farbreihe *W M* (oben rechts),
- Farbreihe *W C* (*unten links*)

Bild 5_25 zeigt Hellbezugswerte Y von Farbreihen zwischen Weiß W und Druckfarbe (Y, M, C) mit ebenfalls quadratischer Stufung des Hellbezugswerts Y zur Erzeugung von visuell gleichabständigen Reihen. Die Farbreihe W - Y ist oben links, die Farbreihe W - M ist oben rechts, und die Farbreihe W - C ist unten links dargestellt.

Die Zahlenwerte ergeben sich aus den Hellbezugswerten für Gelb ($Y_Y = 76$), Magentarot ($Y_M = 17$) und Cyanblau ($Y_C = 21$), den Hellbezugswertergänzungen zu Weiß ($Y_W = 81$) sowie der quadratischen visuell gleichabständigen Stufungsreihe. Alle Hellbezugswerte Y der Grund- und Mischfarben des Mehrfarbendrucks findet man in Tabelle 5_1 auf Seite 156.

Die visuelle Gleichabständigkeit ist insbesondere bei der Reihe W-Y fraglich, wenn auch für diese Form die quadratische Stufung gewählt wird. Da sich Gelb im Hellbezugswert ($Y_Y = 76$) gegenüber Weiß ($Y_W = 81$) kaum ändert, scheint eine lineare Stufung visuell günstiger.

Wir werden auch im folgenden Abschnitt erkennen, daß sowohl beim Farbfernsehen als auch im Buntaufbau beim Mehrfarbendruck die Reproduktionstechnologie (quadratische Abnahme der Komponente V zur Erzeugung der Reihe W - Y) automatisch eine quadratische Stufung der Reihe W - Y entsteht. In jedem anderen Fall würde die Graubalance der Graureihe zerstört, das heißt, die Graumuster würden nicht unbunt erscheinen. Die erwünschte lineare Stufung der Reihe W - Y kann daher nur im Unbuntaufbau des Mehrfarbendrucks benutzt werden.

Bild 5_26Farbauszüge Unbuntaufbau

9491_4 bis 9491_8

- Farbauszüge im Unbuntaufbau:
- Cyanblau C (oben links),
- Magentarot M (oben rechts),
- Gelb Y (Mitte links),
- Schwarz N (Mitte rechts),
- Farbbild C + M + Y + N (unten links)

Bild 5_26 zeigt einen vierfarbigen Mehrfarbenrasterdruck. Neben den Separatdrucken der drei bunten Grundfarben Cyanblau C (B30G), Magentarot M (R30B) und Gelb Y (G90J) und der unbunten Grundfarbe Schwarz N ist der vierfarbige Übereinanderdruck der vier Separatdrucke gezeigt.

Die von *Küppers* (1979) verfolgte Drucktechnologie eines Sieben-Farbendrucks benutzt neben Schwarz insgesamt sechs bunte Farben (*Y*, *O*, *M*, *V*, *C* und *L*) als Grundfarben, die alle den drei bunten Grund- und Mischfarben ähnlich sind, jedoch jeweils größere Buntheit besitzen. Der Farbumfang des Sieben-Farbendrucks ist entsprechend größer als beim Vier-Farbendruck. Die starken Helligkeitsschwankungen zwischen helleren Grundfarben (C, M und Y) sowie den dunkleren Mischfarben (O, L und V) im Bunttonkreis sind reduziert.

5.4 Farbwiedergabe im Farbfernsehen

Am Farbfernsehempfänger kann man schon mit bloßem Auge regelmäßig nebeneinander liegende, kleine farbige Punkte erkennen.

- von Weiß W und Gelb Y mit Lochmaskenröhre (oben links und rechts),
- von Magentarot M und Cyanblau C mit Schlitzmaskenröhre (unten links und rechts)

Die in den **Bildern 5_27** sichtbaren Punkte Orangerot O(J80R), Laubgrün L (G10J) und Violettblau V(R80B) werden auf dem Farbfernsehempfänger in ihrem Hellbezugswert gesteuert. Falls diese Grundfarben einzeln voll aufleuch-

ten, so entstehen Orangerot O(J80R), Laubgrün L(G10J) oder Violettblau V(R80B).

Leuchten zwei der drei Grundfarben voll auf, so entstehen Gelb Y (G90J) aus Orangerot O und Laubgrün L, Cyanblau C (B30G) aus Violettblau V und Laubgrün L sowie Magentarot M (R30B) aus Violettblau V und Orangerot O. Leuchten alle drei Grundfarben voll auf, so entsteht Weiß am Bildschirm. Der Farbeindruck Schwarz N entsteht nur in einer helleren, z. B. weißen Umgebung.

Bild 5_28 zeigt die 17 CIE-Testfarben zur Prüfung der Farbwiedergabe (vgl. DIN 6169 "Farbwiedergabe") sowie die Grundfarben Orangerot O(J80R), Laubgrün L(G10J) und Violettblau V(R80B) des Farbfernsehens in der Normfarbtafel (x, y). Die 17 CIE-Testfarben sind in Bild 8_38 auf Seite 246 in Farbe gedruckt.

Die ersten acht CIE-Testfarben mit gleichem Hellbezugswert bilden einen Bunttonkreis und liegen auf der eingezeichneten, ellipsenähnlichen Kurve. Der Farbort von Tageslichtweiß *D65* liegt im Innern.

Der Hellbezugswert von Weiß *D65* muß sich zugleich als Summe der drei Hellbezugswerte der Grundfarben Orangerot O(J80R), Laubgrün L(G10J) und Violettblau V(R80B) ergeben. Alle Farben innerhalb des Dreiecks OLV können im Farbfernsehen wiedergegeben werden. Für die blaue CIE-Testfarbe Nr. 12 (nahe Buchstabe V im Bild 5_28) kann jedoch niemals eine 100prozentige Farbwiedergabe erreicht werden.

Die Farborte der Grundfarben und das Weiß am Farbfernseh-Empfänger sind von der Union der Europäischen Rundfunkanstalten (EBU) genormt worden. Damit liegen auch ihre Buntheiten und Helligkeitsverhältnisse eindeutig fest.

7310_7

Grund- und Mischfar	ben des N	Normfarbfe	rnseh-Prozes	ses nach l	DIN 6169
Grundfarbe oder Mischfarbe und	Normfai anteile	rbwert-	Normfa	rbwerte	
Bezeichnung	x	у	X	Y	Ζ
drei additive Grundfar	ben:				
O Orangerot	0,6400	0,3300	43,03	22,19	2,02
L Laubgrün	0,2900	0,6000	34,16	70,68	12,96
V Violettblau	0,1415	0,0482	17,82	7,13	93,87
drei additive Mischfar	ben:				
C Cyanblau	0,2197	0,3288	51,98	77,81	106,83
M Magentarot	0,3270	0,1576	60,85	29,32	95,89
Y Gelb	0,4172	0,5019	77,19	92,87	14,98
D65 (Weiß)	0,3127	0,3291	95,01	100,00	108,85

 Tabelle 5
 2 Grund- und Mischfarben Farbfernsehen
Grund- und Mischfarben des Farbfernsehens nach DIN 6169 Teil 6 (vgl. Mayer, 1972)

Tabelle 5_2 zeigt die Grund- und Mischfarben eines Farbfernseh-Empfängers, der nach DIN 6169 Teil 6 normgerecht eingestellt ist (vgl. Mayer, 1972). Dieser Empfänger muß bei gleichen Signalspannungen die Farbart D65 liefern.

Man kann farbmetrisch wegen der Festlegung der Empfänger-Normfarbwertanteile x, y für Orangerot O (J80R), Laubgrün L (G10J), Violettblau V (R80B) und Weiß D65 angeben, wie die Empfindlichkeiten oder Spektralwerte der Farbfernsehkamera aussehen müssen, damit die Farben farbvalenzmetrisch exakt wiedergegeben werden.

Bild 5_29Ideale Spektralwerte

Farbfernsehkamera 8540 71 Ideale Spektralwerte $\overline{o}(\lambda)$, $\overline{l}(\lambda)$ und $\overline{v}(\lambda)$ für Lichtart *E* (energiegleiche Strahlung) zwischen 380 nm und 720 nm für additive EBU-Farbfernseh-Primärvalenzen O, L und V

Die Farbfernsehkamera muß drei Empfänger mit den in **Bild 5_29** gezeigten theoretischen spektralen Empfindlichkeiten $\bar{\sigma}(\lambda)$, $l(\lambda)$ und $\bar{v}(\lambda)$ besitzen. Da man negative Empfindlichkeiten nicht direkt realisieren kann, muß man von

positiven Spektralwertkurven ausgehen, wie z. B. den Normspektralwertkurven $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ und $\bar{z}(\lambda)$, und muß die negativen Anteile durch eine elektronische Matrix konstruieren, die z. B. durch die Spektralwerttransformationen definiert ist. Dies wird in allen guten Farbfernsehkameras mit unterschiedlichem Erfolg versucht. Eine Farbfernsehkamera mit den Spektralwertkurven von Bild 5_29 führt daher zu farbvalenzmetrisch exakten Wiedergabefarben am Farbfernsehempfänger, jedoch nur innerhalb des Farbdreiecks *OLV*, das für den Farbfernseh-Empfänger in Tabelle 5_2 auf Seite 166 gilt.

Die folgenden Bilder geben einen Überblick über die Soll-Digitalwerte im Farbfernsehen für die Farbreihe zwischen Weiß W und Schwarz N (Graureihe), die Reihen zwischen Buntfarbe (C, M, Y, L, O, V) und Schwarz N sowie zwischen Weiß W und Buntfarbe (C, M, Y, L, O, V). Die Digitalwerte sind bei 8 bit auf den Bereich 0 bis 255 beschränkt. Der Wert $D_w = 255$ ist der digitale Maximalwert für Weiß. Zwischen den für Weiß auf 100 normierten farbmetrischen Hellbezugswerten im Farbfernsehen, vgl. Tabelle 5_2, Seite 166, und den Digitalwerten besteht folgender Zusammenhang für alle Farben:

 $D = 2,55 \cdot Y.$

Es werden hier nur die Digitalwerte der wichtigsten Reihen dargestellt, damit das Prinzip der Berechnung erkennbar wird. Die Darstellung beschränkt sich auf 16stufige Farbheiten, z. B. N^* , C^* , M^* , Y^* , O^* , L^* und V^* .

Farbheit	Fa	arbnun	ımer	Digitalbezugswert
0* L* V*	n	h*	d	$D(Y_W = 100 \text{ Video})$
15,15,15	7	FFF*	4095	100 • (81/81) • 2,55
13,13,13	_	DDD*	3549	100 • (64/81) • 2,55
11,11,11	_	BBB*	3003	100 • (49/81) • 2,55
9, 9, 9	-	999*	2457	100 • (36/81) • 2,55
7, 7, 7	8	777*	1911	100 • (25/81) • 2,55
5, 5, 5		555*	1365	100 • (16/81) • 2,55
3, 3, 3	_	333*	819	100.(9/81).2,55
1, 1, 1	_	111*	273	100.(4/81).2,55
0, 0, 0	0	000*	0	100.(2/81).2,55

Bild 5_30Digitalwerte von Farbreihen W-N und L-N 9091_1,9091_8 Digitalwerte D einer Graureihe W - N und der Reihe L - N, die eine 16stufige, gleichabständige visuelle Stufung ergeben, am Farbfernsehmonitor:

- Farbreihe W N (oben links),
- Farbreihe L N (oben rechts)

Bild 5_30 zeigt die Digitalwerte *D* einer Graureihe W - N und der Reihe L - N, die eine 16stufige, gleichabständige visuelle Stufung ergeben. Die Farbreihe W - N ist *oben links* und die Farbreihe L - N ist *oben rechts* dargestellt. Es

wird angenommen, daß der Hellbezugswert von Weiß *D65* auf 100 normiert ist, vgl. Tabelle 5_2, Seite 166. Bild 5_30 zeigt an, daß bei quadratischer Stufung der Digitalwerte *D* eine visuell gleichabständige Graureihe entsteht. Dies entspricht dem folgenden Zusammenhang zwischen Helligkeit L^* und Hellbezugswert *Y* für weißes Umfeld, den wir schon in Abschnitt 2.15.1 ab Seite 60 kennengelernt haben:

 $L_{\rm w}^{\star} = 100 (Y/100)^{1/2}$.

Für den 255stufigen Digitalwert D und die 16stufige Digitalheit D^* gilt entsprechend:

$$D = 255 (Y/100),$$

 $D^* = 15 (Y/100)^{1/2}$

In Bild 5_30 (*oben rechts*) wird für Laubgrün *L* der Hellbezugswert $Y_L = 71$ benutzt, vgl. Tabelle 5_2, um die Digitalwerte zu berechnen. Entsprechende Hellbezugswerte aus der gleichen Tabelle zeigen sich in den folgenden Bildern.

Es wird hier angenommen, daß bei quadratischer Stufung der Digital- oder Hellbezugswerte eine visuell gleichabständige Graureihe entsteht. Für aneinander grenzende Farbmuster muß diese quadratische Stufung nach Bild 4_29, Seite 105, mehr in Richtung logarithmische Stufung (*Weber-Fechner*-Gesetz) und für getrennt liegende Muster auf grauer Umgebung mehr in Richtung kubische Stufung (CIELAB-Formel) verschoben werden. Dies gilt zumindest für Farben, die heller als das mittelgraue Umfeld sind. Die hier zur Vereinfachung gewählte *quadratische* Stufung ist eine Näherung für weiße Papierumgebung und separat liegende Muster.

Die Frage, ob bei dunkler Umgebung eine kubische Stufung entsprechend Abschnitt 2.15.1 ab Seite 60

$$L_{\rm n}^{\star} = 100 (Y/100)^{1/3}$$

günstiger ist, hängt von der visuellen Darbietung der Muster ab und gilt eher für separat liegende Muster auf dunkelgrauer (*schwarzer*) Umgebung. Für aneinandergrenzende Muster auf grauer Umgebung tritt jeweils eine Adaptation an die mittlere Leuchtdichte der Muster auf. Bei genügend langer Beobachtungszeit größer 1 s und Flächen größer 2^o gilt:

$$L_{\rm a}^{\star} = 100 (Y/100)^{1/6}.$$

Zur Codierung der Helligkeit wurden im amerikanischen NTSC- und im deutschen PAL-Farbfernsehsystem die Exponenten unterschiedlich gewählt. Für NTSC wurde 1/1,8 und für PAL 1/2,4 gewählt, vgl. Bild 8_34 auf Seite 242. Zwischen beiden Grenzfällen liegt unser Exponent 1/2 in den Bildern dieses Abschnitts.

Farbheit	Farbnun	ımer	Digitalbezugswert
0* L* V*	n h*	d	$D(Y_Y = 93 \text{ Video})$
15,15, 0	3 FF0*	4080	93 • (81/81) • 2,55
13,13, 0	- DD0*	3536	93 • (64/81) • 2,55
11,11, 0	- BB0 *	2992	93·(49/81)·2,55
9, 9, 0	- 990*	2448	93 • (36/81) • 2,55
7, 7, 0	11 770*	1904	93 • (25/81) • 2,55
5, 5, 0	- 550*	1360	93 • (16/81) • 2,55
3, 3, 0	- 330*	816	93·(9/81)·2,55
1, 1, 0	- 110*	272	93·(4/81)·2,55
0, 0, 0	0 000*	0	81.(2/81).2,55

Farbheit	Fa	rbnum	mer	Digitalbezugswert
0* L* V*	n	h*	d	<i>D</i> (<i>Y_C</i> = 78 Video)
0,15,15	6	0FF*	255	78 • (81/81) • 2,55
0,13,13		0DD *	221	78 • (64/81) • 2,55
0,11,11		0BB*	187	78 • (49/81) • 2,55
0, 9, 9		099*	153	78 • (36/81) • 2,55
0, 7, 7	14	077*	119	78 • (25/81) • 2,55
0, 5, 5		055*	85	78 • (16/81) • 2,55
0, 3, 3	_	033*	51	78.(9/81).2,55
0, 1, 1	_	011*	17	78.(4/81).2,55
0, 0, 0	0	000*	0	81.(2/81).2,55

Farbheit	Farbnun	ımer	Digitalbezugswert
0* L* V*	n h*	d	$D(Y_M = 29 \text{ Video})$
15, 0,15	5 F0F*	3855	29.(81/81).2,55
13, 0,13	- D0D*	3341	29.(64/81).2,55
11, 0,11	- B0B *	2827	29.(49/81).2,55
9, 0, 9	- 909*	2313	29.(36/81).2,55
7, 0, 7	13 707*	2999	29.(25/81).2,55
5, 0, 5	- 505*	1285	29.(16/81).2,55
3, 0, 3	- 303*	771	29.(9/81).2,55
1, 0, 1	- 101*	257	29.(4/81).2,55
0, 0, 0	0 000*	0	81.(2/81).2,55

Bild 5_31Digitalwerte von Farbreihen *Y*, *M*, *C*–*N* 9091_5 bis 9091_7 Digitalwerte *D* von Farbreihen zwischen Buntfarbe (*Y*, *M*, *C*) und Schwarz *N* am Farbfernsehmonitor: • Farbreihe Y - N (oben links),

- Farbreihe M N (oben rechts),
- Farbreihe C N (unten links)

Bild 5_31 zeigt die Digitalwerte *D* von Farbreihen zwischen Buntfarbe (Y, M, C) und Schwarz *N* mit ebenfalls quadratischer Stufung der Digitalwerte *D* zur Erzeugung von visuell gleichabständigen Reihen. Die Farbreihe Y - N ist *oben links*, die Farbreihe M - N ist *oben rechts* und die Farbreihe C - N ist *unten links* dargestellt.

Farbheit	Farbnummer			Digitalbezugswert		
0* L* V*	n	h*	d	$D(Y_Y = 93 \text{ Video})$		
15,15,15	7	FFF*	4095	[93+7.(81/81)].2,55		
15,15,13	_	FFD*	4093	[93+7.(64/81)].2,55		
15,15,11	_	FFB*	4091	[93+7·(49/81)]·2,55		
15,15, 9	_	FF9*	4089	[93+7.(36/81)].2,55		
15,15, 7	_	FF7*	4087	[93+7.(25/81)].2,55		
15,15, 5	_	FF5*	4085	[93+7.(16/81)].2,55		
15,15, 3	_	FF3*	4083	[93+7.(9/81)].2,55		
15,15, 1	_	FF1*	4081	[93+7.(4/81)].2,55		
15,15, 0	3	FF0*	4080	[93+7·(0/81)]·2,55		

Far	bheit	Farbnummer			Digitalbezugswert
0 *.	L* V*	n	h*	d	$D(Y_M = 29 \text{ Video})$
15,1	15,15	7	FFF*	4095	[29+71.(81/81)].2,55
15,1	3,15	_	FDF*	4063	[29+71.(64/81)].2,55
15,1	1,15	_	FBF*	4031	[29+71·(49/81)]·2,55
15,	9,15	_	F9F*	3999	[29+71.(36/81)].2,55
15,	7,15		F7F*	3967	[29+71 · (25/81)] · 2,55
15,	5,15		F5F*	3935	[29+71.(16/81)].2,55
15,	3,15		F3F*	3903	[29+71·(9/81)]·2,55
15,	1,15		F1F*	3871	[29+71·(4/81)]·2,55
15,	0,15	5	F0F*	3855	[29+71. (0/81)].2,55

Farbheit	Farbnummer			Digitalbezugswert
0* L* V*	n	h*	d	$D(Y_C = 78 \text{ Video})$
15,15,15	7	FFF*	4095	[78+22.(81/81)].2,55
13,15,15	_	DFF*	3583	[78+22.(64/81)].2,55
11,15,15	_	BFF*	3071	[78+22·(49/81)]·2,55
9,15,15	_	9FF*	2559	[78+22.(36/81)].2,55
7,15,15		7FF*	2047	[78+22.(25/81)].2,55
5,15,15		5FF *	1535	[78+22·(16/81)]·2,55
3,15,15		3FF*	1023	[78+22.(9/81)].2,55
1,15,15		1FF*	511	[78+22·(4/81)]·2,55
0,15,15	6	0FF*	255	[78+22.(0/81)].2,55

Bild 5_32 Digitalwerte von Farbreihen W-Y, M, C 9091_2 bis 9091_4 Digitalwerte D von Farbreihen zwischen Weiß W und Buntfarbe (Y, M, C) am Farbfernsehmonitor:

- Farbreihe *W Y* (*oben links*),
- Farbreihe *W M* (oben rechts),
- Farbreihe W C (unten links)

Bild 5_32 zeigt Digitalwerte *D* von Farbreihen zwischen Weiß *W* und Buntfarbe (*Y*, *M*, *C*) mit ebenfalls quadratischer Stufung der Digitalwerte *D* zur Erzeugung von visuell gleichabständigen Reihen. Die Farbreihe W - Y ist *oben links*, die Farbreihe W - M ist *oben rechts* und die Farbreihe W - C ist *unten links* dargestellt.

Die Zahlenwerte ergeben sich aus den Hellbezugswerten für Gelb ($Y_Y = 93$), Magentarot ($Y_M = 29$) und Cyanblau ($Y_C = 78$), den Hellbezugswertergänzungen zu Weiß ($Y_W = 100$) sowie der quadratischen visuell gleichabständigen Stufungsreihe. Alle Hellbezugswerte Y der Grund- und Mischfarben des Farbfernsehens findet man in Tabelle 5_2 auf Seite 166.

Die visuelle Gleichabständigkeit ist insbesondere bei der Reihe W-Y fraglich, wenn auch für diese Form die quadratische Stufung gewählt wird. Da sich Gelb im Hellbezugswert ($Y_Y = 76$) gegenüber Weiß ($Y_W = 81$) kaum ändert, scheint eine lineare Stufung visuell günstiger.

Beim Farbfernsehen und auch im Buntaufbau beim Mehrfarbendruck ist diese quadratische Abnahme der Komponente V zur Erzeugung der Reihe W - Y automatisch durch die Reproduktionstechnologie bedingt. Die erwünschte lineare Stufung der Reihe W - Y ist daher im Farbfernsehen oder am Farbmonitor nicht möglich.

6 Schnittstellen, Farbauswahl und Farbstufung

Im folgenden Teil sollen Schnittstellen, Farbcodierung, Farbanzahl und Farbstufung im Bereich Farbbildverarbeitung behandelt werden.

Bild 6_1 zeigt wesentliche Schnittstellen im Bereich digitale Bildverarbeitung. Schnittstellen sind Übergänge von einem Bereich zum anderen. Die Übergänge werden heute durch Digitaltechnik beherrscht. Als zentrales Element dient der digitale Farbspeicher in Bildverarbeitungssystemen. Die Digitalisierung und Codierung von Farbe wird uns daher zunächst beschäftigen, bevor wir auf die Eigenschaften der Schnittstellen eingehen.

6.1 Digitaler Farbbildspeicher und Farbanzahl

Der digitale Farbbildspeicher dient zur Aufnahme der digitalen Kennzeichen der Farbbilddaten.

Drei Bitebenen im Farbspeicher erlauben eine Farbpalette von acht Farben. Die ersten acht Farben erhalten dann die in **Bild 6_2** rechts angegebene Bitcodierung.

 $3 \times 2 = 6$ Bitebenen erlauben eine Farbpalette von 64 Farben. Die Codierung für acht Hauptfarben ist wieder in **Bild 6_3** rechts angegeben.

Bild 6_4Bitspeicher, -ebenen und 512Farben 8660_3 Bitspeicher und Farbpalette; 3×3 Bitebenen ergeben insgesamt $8 \times 8 \times 8 = 512$ Farben

 $3 \times 3 = 9$ Bitebenen erlauben eine Farbpalette von 512 Farben. Die Codierung für acht Hauptfarben ist wieder in **Bild 6_4** rechts angegeben.

 $3 \times 4 = 12$ Bitebenen erlauben eine Farbpalette von 4096 Farben. Mit der in **Bild 6_5** gezeigten Speicheranordnung für jeden Bildpunkt sind alle 4096 Farben gleichzeitig darstellbar.

Bild 6_6Bitebenen und 64 Farben

8660_5, 8660_6

Drei 2-bit-Ebenen ergeben insgesamt $4 \times 4 \times 4 = 64$ Farben:

- Bitspeicher und Bitebenen-Farbcodierung (oben links),
- Bitspeicher und 3 × 2-bit-Farbcodierung (*oben rechts*)

Die Organisation des Farbspeichers bei 64 Farben zeigt **Bild 6_6**. $3 \times 2 = 6$ Bitebenen werden in drei 2-bit-Ebenen gegliedert. Jede 2-bit-Ebene erlaubt vier Stufen der drei Grundfarben *O*, *L* und *V*. Diese Wahl ergibt $4 \times 4 \times 4 = 64$ Farben.

Drei 4-bit-Ebenen ergeben insgesamt $16 \times 16 \times 16 = 4096$ Farben:

- Bitspeicher und Bitebenenfarbcodierung (oben links),
- Bitspeicher und 3 × 4-bit-Farbcodierung (*oben rechts*)

Die Organisation des Farbspeichers bei 4096 Farben zeigt **Bild 6_7**. $3 \times 4 = 12$ Bitebenen werden in drei 4-bit-Ebenen gegliedert. Jede 4-bit-Ebene erlaubt 16 Stufen der drei Grundfarben *O*, *L* und *V*. Diese Wahl ergibt $16 \times 16 \times 16 = 4096$ Farben.

Im Sonderfall Bildschirmtext (Btx) erlaubt man in einem separaten Farbpalettenspeicher (sogenannte Look-up-Table) eine Auswahl von 32 Farben aus 4096. Dann genügen im Farbspeicher fünf Bitebenen, das sind die Ziffern 0 bis 31, mit denen man insgesamt 32 Farben beschreibt.

Für die Bildverarbeitung dürften 12 bit ein Minimum darstellen. Jeweils vier Bit sind für jede der drei Grundfarben *O*, *L* und *V* notwendig.

Bild 6_8Numerierung derBtx-Standardfarben8711_4Numerierung der Btx-Standardfarben und
fünf Stufen einer unbunten Farbreihe mit
Hexadezimal-Codierung

Im **Bild 6_8** sieht man die Farbcodierungen für die ersten sechs Btx-Stufen und fünf Unbunt-Stufen in Hexadezimal-Zahlen. Die Hexadizimal-Ziffern (mit A, B, ..., F für die Dezimalzahlen 10, 11, ..., 15) gelten der Reihe nach für die Anteile O, L sowie V und sind bei unbunten Farben alle drei gleich.

6.2 Farbgrafik und CEPT-Standard

6.2.1 Farbbildschirm und Reproduktion von CEPT-Farbbildern

Der Farbbildschirm besteht aus drei nebeneinanderliegenden Leuchtphosphoren Orangerot O, Laubgrün L und Violettblau V, die in ihrer Leuchtdichte entsprechend dem folgenden **Bild 6_9** zwischen 0 und 255 variieren.

Die drei Leuchtphosphore ergeben bei geeigneter Justierung einen weißen Bildschirm, der bei Normeinstellung den Farbort von Tageslicht *D65* aufweist. Ist die Leuchtdichte für Weiß auf 255 normiert, so entsteht eine angenähert visuell gleichabständige Graureihe nur bei (angenähert) quadratischer Stufung der Leuchtdichte.

Bild 6_10 Trichromatische Farbheiten in Digitaltechnik 8550_81 Farbheit $D^* = O^*$, L^* und V^* zwischen 0 und 15 in der digitalen Bildtechnik; Zusammenhang mit Schwarzheit N^* , Weißheit W^* und Buntheit C^* von Farben (zwischen 0 und 255 für höhere Ansprüche)

Nach **Bild 6_10** entsprechen den Leuchtdichten L = 1 (oder 0), 4, 9, ..., 255 die Farbheiten (bzw. Helligkeiten) $D^* = 0, 1, 2, 3, ..., 15$. Die so erzeugte 16stufige Helligkeitsskala der Graureihe auf mittelgrauer Umgebung wird als gleichabständig empfunden.

Für Schwarz mit der Btx-Codierung 0, 0, 0 beträgt die Leuchtdichte 1 (in der Praxis erreicht sie auch wegen Streulicht nicht Null), und für Weiß mit der CEPT-Codierung 15, 15, 15 beträgt die Leuchtdichte 255 bei der gewählten Normierung. Für ein Mittelgrau, das visuell in der Mitte zwischen Schwarz und Weiß liegt, heißt die CEPT-Codierung 8, 8, 8 (oder 7, 7, 7), und die Leuchtdichte beträgt dann 64 (quadratische Stufung) und nicht 128 (lineare Stufung). In der Praxis gilt diese einfache quadratische Stufung nicht streng, sondern ist von der Adaptationsleuchtdichte und der Umfeldsehsituation abhängig. Bei Normeinstellung auf Tageslicht *D65* verhalten sich die Leuchtdichten von O: L: V wie 22: 71: 7. Diese Zahlenwerte ergeben sich bei Normierung der Leuchtdichtesumme von L + O + V auf 100.

Farbheit	Fa	rbnun	ımer	Digitalbezugswert
0* L* V*	n	h*	d	$D(Y_Y = 93 \text{ Video})$
15,15,15	7	FFF*	4095	[93+7·(81/81)]·2,55
15,15,13	_	FFD*	4093	[93+7.(64/81)].2,55
15,15,11	_	FFB*	4091	[93+7·(49/81)]·2,55
15,15, 9	-	FF9*	4089	[93+7·(36/81)]·2,55
15,15, 7	_	FF7*	4087	[93+7·(25/81)]·2,55
15,15, 5	_	FF5*	4085	[93+7·(16/81)]·2,55
15,15, 3	_	FF3*	4083	[93+7·(9/81)]·2,55
15,15, 1	-	FF1*	4081	[93+7·(4/81)]·2,55
15,15, 0	3	FF0*	4080	[93+7·(0/81)]·2,55

Far	bheit	Fa	rbnun	ımer	Digitalbezugswert
0 *	<i>L* V*</i>	n	h*	d	$D(Y_M = 29 \text{ Video})$
15,1	15,15	7	FFF*	4095	[29+71.(81/81)].2,55
15,1	13,15	_	FDF*	4063	[29+71.64/81)].2,55
15,1	11,15	_	FBF*	4031	[29+71.(49/81)].2,55
15,	9,15	_	F9F*	3999	[29+71.(36/81)].2,55
15,	7,15		F7F*	3967	[29+71 · (25/81)] · 2,55
15,	5,15		F5F*	3935	[29+71 · (16/81)] · 2,55
15,	3,15		F3F*	3903	[29+71. (9/81)].2,55
15,	1,15		F1F*	3871	[29+71. (4/81)].2,55
15,	0,15	5	F0F*	3855	[29+71. (0/81)].2,55

Bild 6_11CEPT-Digitalwerte von Reihen W-Y, W-M9091_2, 9091_3CEPT-Werte O^* , L^* und V^* sowie Hellwerte D und Hellheiten D^* von Farbreihen,deren digitaler Weißwert auf $100 \times 2,55 = 255$ normiert ist:

• Farbreihe von Weiß W nach Gelb Y (oben links),

• Farbreihe von Weiß W nach Magentarot M (oben rechts)

Bild 6_11 zeigt die auf 255 für Weiß *W* normierten Farbwerte der Farbreihen W - Y und W - M. Die digitalen Hellwerte *D* ergeben sich aus einer quadratischen Stufung.

Reproduktionen von Bildschirmtextbildern mit 480 Punkten / Zeile (sogenannte CEPT-Mosaikgrafik) ergeben auf dem Farbmonitor etwa 48 cm Bildbreite bei einem üblichen Bildpunktabstand der drei Leuchtphosphore von 1 / 3 mm. Mit einem üblichen 60er Raster (60 Punkte / cm) im Standard-Offsetdruck ergeben sich $8 \cdot (2 / 3)$ cm = 5,4 cm Bildbreite im Druck. Der Faktor 2 / 3 ergibt sich durch die rechteckige Rasterzellgröße mit x = 2 / 3 und y = 1 in CEPT-Mosaikgrafik (diese Wahl ist durch die vorzugsweise rechteckförmigen Textzeichen unserer Schrift-Buchstaben bedingt).

In der CEPT-Geometriegrafik (CEPT, Level 2) ist die Rasterzellgröße quadratisch, und hier wird der Bildschirm durch 320×240 Punkte anstelle von 480×240 Punkten in Mosaik-Grafik ausgefüllt. Zu 320 Punkten gehören in einem 60er Raster im Standard-Offsetdruck erneut 5,4 cm Bildbreite. Fast alle Farbbilder dieses Buchs wurden zunächst in CEPT-Geometriegrafik auf einem Btx-System (*Mupid* C2D) entworfen, sie bestehen aus 320×240 Bildpunkten und haben im Druck die Bildbreite 5,4 cm.

6.2.2 CEPT-Farben, Farb-Codierung und Farb-Ordnung

Die Bildschirmtextfarben wurden im CEPT-Standard (CEPT = Commission Européenne Postes et Télécommunication) 1983 festgelegt. Ihre Codierung geschieht im Hexadezimalmodus. Die Hexadezimal-"Zahlen" kennen die Codierungen 0 bis 9 und A bis F und entsprechen den 16 Dezimalzahlen 0 bis 15.

Bild 6_12 und **Bild 6_13** zeigen bunte und unbunte Btx-Farben mit CEPT-Codierung. **Bild 6_14** und **Bild 6_15** zeigen Anordnungen in sechsteiligen Bunttonkreisen.

Bild 6_12Numerierung von vier *CEPT***-Farbreihen** Numerierung der CEPT(Btx)-Standardfarben und ihre:

- verschwärzlichte Farbreihe (oben links, Index N),
- verweißlichte Farbreihe (oben rechts, Index W),
- Zwischen-Bunttonreihe (unten links),
- fünfstufige unbunte Farbreihe (*unten rechts*)

Im CEPT-Standard sind sechs bunte Farben (Nrn. 1 bis 6) und zwei unbunte Standardfarben Schwarz (Nr. 0) und Weiß (Nr. 7) festgelegt. Mittelgrau (Z = Zentralgrau) erhält die Nummer 8. Von diesen Grundfarben kann man eine verschwärzlichte, eine verweißlichte und eine Zwischenbuntton-Farbreihe ableiten. Ihre mögliche Kennzeichnung ist in Bild 6_12 durch die Indizes N für Schwarz (franz. noir) und W für Weiß angegeben. Die Btx-Nummern 9 bis 14 entsprechen den Kennzeichnungen 1 bis 6 mit Index N.

8711_1 bis 8711_4

Die im Btx-System frei wählbaren Farben Nrn. 16 bis 31 belegt man zweckmäßig (willkürlich) mit den übrigen dargestellten Farben: Nrn. 17 bis 22 sollten den Kennzeichnungen 1 bis 6 mit Index *W* entsprechen, Nrn. 25 bis 30 sollten den Zwischen-Bunttönen entsprechen. Für Dunkelgrau *D* und Hellgrau *H* haben wir von den freien Nrn. 15, 16, 23, 24, 31 willkürlich die Nrn. 16 und 24 benutzt. Dann erhalten die grauen Farben die Nrn. 8, 16 und 24. Die Farben der Nrn. 15, 23 und 31 kann man mit den Elementarfarben *R*, *G* und *B* belegen oder frei wählen. Die Elementarfarbe *J* stimmt in guter Näherung mit der Reproduktionsfarbe Gelb *Y* überein. Eine vollständige Liste der 32 wichtigsten Farben findet man in Tabelle 6_1 auf Seite 180.

Während die Numerierung weitgehend willkürlich ist, ist die hexadezimale CEPT-Codierung eindeutig. Die hexadezimale Codierung beschreibt der Reihe nach die Teilmengen an Grundfarbe (Leuchtphosphore O, L und V) in relativen geeigneten Einheiten. Die relativen Leuchtdichten der Leuchtphosphore müssen so gewählt sein, daß sich eine visuell gleichabständige Graustufung für die 16 möglichen CEPT-Codierungen (000*), (111*), ..., (FFF*) der Graureihe ergibt. Die Graustufen Nr. 0 (CEPT-Codierung 000*), Nr. 16 (333*), Nr. 8 (777*), Nr. 24 (BBB*) und Nr. 7 (FFF*) sind im Bild 6_12 (*rechts unten*) dargestellt.

Bild 6_13Benennung von vier CEPT-Farbreihen8711_5 bis 8711_8Benennung der CEPT-(Btx-)Standardfarben nach farbmetrisch sinnvollen Namen(O, L, V, M, C, Y, N, W) und ihre:

- verschwärzlichte Farbreihe (*oben links*, Index *N*),
- verweißlichte Farbreihe (*oben rechts*, Index *W*),
- Zwischen-Bunttonreihe (unten links, zwei Buchstaben),
- fünfstufige unbunte Farbreihe (unten rechts)

Anstelle der willkürlichen Numerierung der Farben kann man die in der Reproduktionstechnik oft verwendeten Farbbezeichnungen benutzen. Um die Bezeichnungen von den bunten Elementarfarben Rot R, Blau B, Grün G und Gelb J (franz. jaune) klar abzugrenzen, sind die verwendeten Bezeichnungen Y für Gelb (engl. Yellow), O für Orangerot, M für Magentarot, V für Violettblau, Cfür Cyanblau sowie L für Laubgrün für die bunten Standardfarben von Vorteil und eindeutig. Durch den Index N oder W kann man wieder die verschwärzlichte oder verweißlichte Reihe beschreiben. Die Zwischenbunttöne können durch zwei Buchstaben, welche die beiden in der Mischung benutzten Basisfarben beschreiben, gekennzeichnet werden, vgl. Bild 6_13 (*links unten*).

Für die unbunten Farben benutzt man zweckmäßig die Bezeichnungen N für Schwarz, D für Dunkelgrau, Z für Mittelgrau (Zentralgrau), H für Hellgrau und W für Weiß, vgl. Bild 6_13 (*rechts unten*).

Die Numerierung, die Namen und Codierungen im CEPT-Standard sind in Tabelle 6_1 angegeben. Für diese und die von uns erdruckten Farben sind die Hexadezimal-Codierungen in den Standard-Drucken und in der Tabelle 6_1 angegeben. Die von uns verwendeten Bezeichnungen werden im Text und in den Anmerkungen der Tabelle 6_1 erläutert.

Farbnu	mmern, Far	bnamen	und Fa	arbcodi	erunge	n im CEPT-Standard
CEPT- Num- mer	CEPT- Name	CEPT- Farbe	Farb- Code <i>OLV</i> *	BAM- Num- mer	BAM Farbe	Farbname Bemerkungen:
0	Schwarz	S	000*	0	Ν	Schwarz (n = noir)
1	Rot	$R^{(1)}$	F00*	1	0	Orangerot
2	Grün	$G^{(1)}$	0F0*	2	L	Laubgrün
3	Gelb	O^{2}	FF0*	3	Y	Gelb (= Elementargelb)
4	Blau	$B^{(1)}$	00F*	4	V_{-}	Violettblau
5	Magenta	М	F0F*	5	$M^{(3)}$	Magentarot
6	Cyan	С	0FF*	6	$C^{(3)}$	Cyanblau
7	Weiß	W	FFF*	7	W	Weiß
8	Grau	_	777*	8	Z	Zentralgrau (Mittelgrau)
9 –14	Halbtöne	_	_4)	9 –14	_4)	verschwärzlichte Reihe
15	Hintergrund	_	<u> </u>	15	R	Elementarrot
_	—	_	333*	16	D	Dunkelgrau
_	-	_	_4)	17 - 22	_4)	verweißlichte Reihe
_	_	_	_	23	G	Elementargrün
_	—	_	BBB*	24	H_{\perp}	Hellgrau
—	—	_	_4)	25 - 30	_4)	Zwischenbunttöne
-	-	-	-	31	В	Elementarblau

Tabelle 6_1 Farbnummern, Farbnamen im *CEPT***-Standard** 7331_7 Farbnummern, Farbnamen und Farbcodierungen im CEPT-Standard. Die Farben 16bis 31 sind aus 4096 ($16 \times 16 \times 16$) Farben im CEPT-Standard frei wählbar

- ¹⁾ die Bezeichnungen *R*, *G*, *B* werden zweckmäßig für Elementarfarben, z. B. Rot *R* als weder gelblich noch bläulich reserviert.
- ²⁾ Im CEPT-Standard wird Gelb mit *O* (für Orange) abgekürzt.
- ³⁾ In der Praxis der Drucktechnik erhalten die Druckfilme fast ausschließlich die Namen *R* für Rot anstelle von *M* für Magentarot sowie *B* für Blau anstelle von *C* für Cyanblau.
- ⁴⁾ Mögliche Buchstabenbezeichnungen für die verschwärzlichte (Index *N*), verweißlichte (Index *W*) und Zwischenbuntton-Reihe (zwei Buchstaben) sind in den Farbdrucken angegeben.

Tabelle 6_1 zeigt Farbnummern, Farbnamen und Farbcodierungen im CEPT-Standard. Die Farben der Nummern 16 bis 31 sind aus 4096 ($16 \times 16 \times 16$) Farben im CEPT-Standard frei wählbar, unsere BAM-Nummern in diesem Bereich wählen von diesen 16 freien Farben 16 feste Farben aus. Die Farb-Namen
in Tabelle 6_1 sind aus farbmetrischen Gesichtspunkten zur Vereinheitlichung in den verschiedenen Reproduktionstechniken sinnvoll, vgl. Anmerkungen.

Bild 6_14Farbensechseck von vier *CEPT***-Farbkreisen** 8710_1 bis 8710_4 Farbensechseck der CEPT(Btx)-Standardfarben aus drei Grundfarben Nrn. 1, 2 und 4 sowie drei Mischfarben Nrn. 3, 5 und 6, *vgl. Tabelle* 6_1:

- Grund- und Misch-Farbreihe (oben links),
- verschwärzlichte Farbreihe (oben rechts, Nr. 8 + n),
- verweißlichte Farbreihe (unten links, Nr. 16 + n),
- Zwischen-Buntton-Farbreihe (unten rechts, Nr. 24 + n)

Bild 6_14 zeigt die bunten Btx-Standardfarben in Sechseck-Anordnung sowie zusätzlich die verschwärzlichte, verweißlichte und Zwischen-Bunttonreihe. Zusätzlich sind unbunte Farben Schwarz (Nr. 0 bzw. N), Weiß (Nr. 7 bzw. W) und Mittelgrau (Nr. 8 bzw. Z) zusammen mit der verschwärzlichten, verweißlichten und Zwischen-Bunttonreihe gedruckt. Das Bild 6_14 (*oben rechts*) gibt die Btx-Numerierung der verschwärzlichten Farben im CEPT-Standard an.

Die im CEPT-Standard festgelegte Numerierung 1 bis 6 entzieht sich einer farbmetrischen Ordnung von Bunttönen in einem kontinuierlichen Bunttonkreis, wie von jedem Farbsystem gewohnt. Die Numerierungen springen im Bunttonkreis hin und her, vgl. Bild 6_14 (*oben links*). Diese fehlende Systematik im farbmetrischen Sinne ist jedoch eine Systematik im mathematischen Sinne. Die aufsteigend geordneten Hexadezimal-Codierungen der Teilmengen (V, L und O), das heißt umgekehrt zur Btx-Codierung (O, L und V), ergeben nacheinander die Btx-Nummern 0 bis 7, vgl. Tabelle 6_1, wenn ausschließlich die Teilmengen-Codierungen 0 und F zugelassen sind.

Bild 6_15Farbensechseck von vier CEPT-Farbreihen8710_5 bis8710_8Farbensechseck der CEPT(Btx)-Standardfarben aus drei Grundfarben O, L und V sowiedrei Mischfarben Y, M und C, vgl. Tabelle 6_1 auf Seite 180:

- Grund- und Misch-Farbreihe (oben links),
- verschwärzlichte Farbreihe (oben rechts, Index N),
- verweißlichte Farbreihe (*unten links*, Index *W*),
- Zwischen-Buntton-Farbreihe (unten rechts, zwei Buchstaben)

Bild 6_15 zeigt bunte und unbunte Btx-Farben nach farbmetrischen Gesichtspunkten im Buntton-Sechseck geordnet. Bild 6_15 zeigt die bunten Btx-Standardfarben, die verschwärzlichte, verweißlichte und Zwischen-Bunttonreihe im Buntton-Sechseck. Bild 6_15 (*oben rechts*) enthält die Buchstaben der Standardfarben jeweils mit dem Index *N*, das Bild 6_15 (*unten rechts*) die verweißlichten mit dem Index *W*.

6.2.3 Farbmonitor-Testbild mit CEPT-Farben

Im Bildschirmtextsystem des Telekomspeichers gibt es ein Farbmonitor-Testbild mit den wichtigsten CEPT-Standardfarben. Neben den Grund- und Mischfarben erlaubt eine 16stufige Graureihe eine optimale Farbmonitor-Einstellung.

Bild 6_16Farbmonitor-Testbild mit *CEPT*-Farben 8490_1 Farbmonitor-Testbild mit CEPT-Farben im Btx-Telekomsystem mit Grund- und Mischfarben sowie einer 16stufigen Graureihe für eine optimale Farbmonitor-Einstellung

Bild 6_16 zeigt ein Farbmonitor-Testbild mit CEPT-Farben aus dem Btx-Telekomsystem mit Grund- und Mischfarben, einer verschwärzlichten Farbreihe sowie einer 16stufigen Graureihe. In der Regel gibt es am Farbmonitor nur zwei Regler für "Helligkeit" und "Kontrast".

Der Regler "Helligkeit" erlaubt eine Zumischung von "Weiß" über den ganzen Bildschirm. Die Einstellung wird so vorgenommen, daß das Feld "Schwarz" wirklich schwarz erscheint und sich von der benachbarten dunkelgrauen Farbe noch deutlich unterscheidet.

Der Regler "Kontrast" erlaubt eine Erhöhung der Verstärkung des Kontrastbereichs "Schwarz–Weiß". Durch Verstärkung der Spannung der drei Elektronenstrahlen werden die Phosphore *O*, *L* und *V* zu höherer Leuchtdichte bei nahezu gleichem Nullpotential angeregt. Die Verstärkung darf nicht zu groß sein, um ein "Überstrahlen", d. h. ein zu blendendes Bild, und Unschärfe durch Anregung der Nachbarpunkte zu verhindern.

Bei professionellen Monitoren läßt sich auch das Verstärkungsverhältnis der drei Phosphore *O*, *L* und *V* separat ändern. Hierdurch wird der "Farbort von Weiß" geändert, der nach DIN 6169 den Farbort von Tageslicht *D65* (x = 0,31, y = 0,33) liefern soll.

6.2.4 Holen und Ändern von Farbbildern mit CEPT-Farben

Grafiken können aus dem Btx-Telekomspeicher durch eine mehrstellige Nummer oder einen Namen über die Telefonleitung geholt werden. Die Zeichen * und # begrenzen die Nummer oder den Namen, vgl. auch das Basic-Programm unten.

Die Bundesanstalt für Materialforschung und Materialprüfung (BAM) war 1986 durch * 65100 # im Btx-System vertreten.

Bild 6_17BAM-Leitseite imBtx-Telekomsystem8490_2BAM-Btx-Leitseite im Btx-Telekom-
system mit Bundesadler und Grundinfor-
mationen in sechs Hauptfarben

Bild 6_17 zeigt die BAM-Leitseite im Btx-Telekomsystem mit Bundesadler und Grundinformationen in sechs Hauptfarben. Diese Grafik kann auch durch das folgende Basic-Programm (Software-Basis der Fa. *Mupid*, auch für IBM-PC) aus dem Postspeicher geholt und entsprechend abgeändert werden.

```
1 rem BAM-Btx-Leitseite
2 rem Bildveränderung
3 send *65100#
4 print at(5,3)"Koll.Farbgraphik"
5 print at(5,14)"19.2.86,15h,BAM"
6 stop
```

Bild 6_18Programm Änderung *BAM***-Leitseite** D8210_4 Basic-Programm zur Änderung der BAM-Leitseite (* 65100 #) mit Ankündigung "Kolloquium Farbgrafik, 19. 2. 86, 15h"

Bild 6_18 zeigt ein Basic-Programm zur Änderung der BAM-Leitseite (* 65100 #) mit Ankündigung "Kolloquium Farbgrafik, 19. 2. 86, 15h".

Bild 6_19 zeigt die geänderte BAM-Leitseite. In Spalte 5, Zeile 3 und Zeile 14, sind eine Kolloquiums-Ankündigung mit Datum eingefügt. Die Btx-Bilder und ihre Änderungen können auf einem PC-Medium abgespeichert werden. Für Lehrzwecke können sie auch unabhängig vom Btx-Netz benutzt werden.

Es ist geplant, die Bilder dieses Buchs auch im Btx-Format im Btx-Netz zur Verfügung zu stellen. Nahezu alle Bilder liegen in CEPT (Btx-)-Geometriegrafik vor und wurden später zur Erhöhung der Qualität in PostScript-Geometriegrafik umgewandelt. Die Vorteile der PostScript-Bilder werden in Kapitel 8 "PostScript und CIE-Farbräume" ab Seite 207 dargestellt.

6.3 Filmvorlage, Farbscanner und Farbwiedergabe

Die Eigenschaften der Filmvorlagen, aufgebaut aus drei Filmfarbstoffen, und die des Farbscanners, aufgebaut aus drei lichtelektrischen Empfängern, beeinflussen die Farbwiedergabe.

Bild 6_20 Schnittstellen in der Bildverarbeitung 8690_13 Schnittstellen im Bereich Bildverarbeitung – Druck: Farbfilmvorlagen, Farbspeicher, Farbreproduktion

In **Bild 6_20** ist der Teilbereich Filmvorlage -> Scannertyp oben links dargestellt.

Von der Filmvorlage zur Druck- Reproduktion, Einflußparameter:	
Filmmaterial: Agfa, Fuji, Kodak	
Belichtung: -6GRAD, 0GRAD, +6GRAD	
Aufnahmelichtart: 3200K, 5500K, 7700K	
Scannertyp: Breitband, Laser,	עוית
Scannerjustierung: leeres Bildfenster,	Blid 6
Filmschleier, DIN-Testfarbe Nr. 16 / 17	Farbbi
Kennlinientransformation: quadratisch	Einfluß
Reproduktionsmodell: Rasterverbreiter.	tastung
Druckfarben: Euroskala,	Scanne

Bild 6_21 EinflußparameterFarbbildabtastung8690_2Einflußparameter bei der Farbbildab-
tastung von Filmvorlagen, besondereScanner-Eigenschaften und Kennlinien

Entsprechend **Bild 6_21** beeinflussen die Farbfilmvorlage bzw. das verwendete Farbfilmmaterial, die Belichtung und die Aufnahmelichtart zunächst die Farbsignale und damit auch die Monitordarstellung und die Druckreproduktion.

Die Farbscannersignale, die maßgebend für die Farbbild-Abspeicherung im Bildspeicher und später für den Druck sind, werden durch den Scannertyp, die Scannerjustierung und die Kennlinientransformation beeinflußt.

Bild 6_22 zeigt die Filmtransmissionen bei Standardbelichtung mit der Standardaufnahmelichtart für zwei unbunte Testfarben Nr. 16 (Mittelgrau) und Nr. 17 (Weiß) nach DIN 6169. Zusätzlich ist die Transmission der Testfarbe Nr. 17 bei Überbelichtung um sechs DIN angegeben, die der Transmission des sogenannten Filmschleiers entspricht. Dieser liegt nach Norm bei 0,6. Die Transmission von unbunten Farben weist mehrere Maxima auf, die durch drei Filmfarbstoffe Gelb, Magenta und Cyan entstehen.

Bild 6_23 Relative Empfindlichkeit Laserscanner 8680_4 Relative Empfindlichkeit für Laser-Farbscanner mit Empfindlichkeiten an drei Wellenlängen; drei gleiche Signale für unbunte Farben

Mit Scannern verschiedenen Typs tastet man das Diamaterial ab. Die Empfindlichkeiten eines Laser-Scanners mit drei das Diafilmmaterial durchleuchtenden Laser-Lichtquellen sieht man im **Bild 6_23**. Es stehen nur Laser mit bestimmten Wellenlängen zur Verfügung. Insbesondere im Grünbereich gibt es verschiedene Möglichkeiten.

Bild 6_24 zeigt die Empfindlichkeiten oder Spektralwerte von Breitband-Scannern, die schon mehr den Empfindlichkeiten des menschlichen Auges ähneln, die ebenfalls breitbandig sind.

Für einen rein additiven Farbreproduktionsprozeß, z. B. das Farbfernsehen, kann man ideale Empfindlichkeiten, sogenannte Abtast-Spektralwerte, entsprechend **Bild 6_25** für eine farbmetrisch optimale Studiokamera angeben. Die Empfindlichkeiten ergeben sich als Lineartransformationen der Normspektralwertfunktionen. Die Koeffizienten der Transformation hängen von den drei Farben der Leuchtphosphore auf dem Farbfernsehempfänger ab, die von den europäischen Fernsehgesellschaften genormt wurden, vgl. Anhang.

Die negativen Anteile kann man nicht direkt durch einen physikalischen Empfänger erzeugen, sondern nur über elektronische Matrizierung (Differenzbildung der Ausgangssignale).

Bild 6_26 zeigt zwei metamere Farben für die Normlichtart D55, die für den Normalbeobachter gleich aussehen. Wenn man mit den drei Scan-Empfängern diese zwei von der BAM für die Farbscanner-Prüfung und -Justierung hergestellten, gleich aussehenden metameren Farben abtastet, so entstehen zwischen den Originalfarben und den aus den unterschiedlichen Scannersignalen für die beiden Farben berechneten Wiedergabefarben unterschiedliche Farbabstände oder Farbwiedergabe-Indizes.

Farbwiedergabe-Index R _i der metameren BAM-Scanner-Testfarbe			
Scanner	TF 1	Farbwieder- gabe-Index	Farbab- stand
Breitband	1 2	82 84	3
Laser	1	63	10
idealer	2 1 2	100	0
D55, Farbjustierung leeres Bildfenster			

Bild 6_27 Farbwiedergabe-Index und
Farbabstand8690_3Farbwiedergabe-Index und Farbabstand
berechnet aus Farbwert-Signalen verschie-
dener Farbscanner von zwei für D55 meta-
meren BAM-Testfarben

Bild 6_27 zeigt jeweils den speziellen Farbwiedergabe-Index für die beiden metameren BAM-Scanner-Testfarben und die drei Scannertypen: Laser, Breitband und idealer Scanner.

Der Begriff *Farbwiedergabe-Index* muß erläutert werden: Farbveränderungen zwischen Original und Wiedergabe werden durch den Farbwiedergabe-Index gekennzeichnet. Dieser erreicht maximal den Wert 100 und erniedrigt sich bei einem mittleren Farbabstand von $\Delta E^* = 10$ auf angenähert den Wert 50. Der mittlere Farbabstand wird als Mittel über 17 international vereinbarte Testfarben errechnet. Der mittlere Farbwiedergabe-Index liegt bei Studiofernsehkameras um 80 ($\Delta E^* = 4$), in der Farbfotografie bei 50 ($\Delta E^* = 10$) und im Druck bei 25 ($\Delta E^* = 15$).

Der Farbabstand ist für den idealen Scanner Null, der Farbwiedergabe-Index ist 100. Für einen Laserscanner ist der Farbabstand mehr als doppelt so groß wie für den hier gezeigten Breitbandscanner. Auch der Farbwiedergabe-Index ist entsprechend geringer.

Nur der ideale Scanner sieht wie das menschliche Auge keinen Unterschied zwischen den beiden metameren BAM-Testfarben. Dieser Farbabstand ist für den Laser-Scanner um den Faktor drei größer als für einen Breitband-Scanner.

6.4 Kennlinien für Farbmonitor und Druckreproduktion

Die farbmetrisch sinnvollsten Kennlinien für den Farbmonitor und den Druck bilden im folgenden einen Schwerpunkt.

Bild 6_28 Schnittstellen in der Bildverarbeitung 8690_14 Schnittstellen im Bereich Bildverarbeitung – Druck: Farbfilmvorlagen, Farbspeicher, Farbreproduktion

Mit **Bild 6_28**, das schon an Anfang des letzten Abschnitts stand, wird jetzt vorzugsweise der Blick auf die Kennlinien von Monitor und Druckreproduktion gerichtet. Die Farben auf dem Farbmonitor werden durch die Bit-Ebenen im Farbspeicher und Kennlinien für die Ansteuerung bestimmt.

Im Farbspeicher gibt es Systeme mit bis zu 32 Bit-Ebenen. Die Reproduktion auf dem Monitor und als Druck erfordert unterschiedliche Kennlinien. Die Farbmetrik liefert Grundlagen für diese Kennlinien am Monitor und im Druck. Eine Kennlinie beschreibt den Zusammenhang zwischen meßtechnischer Koordinate Y und visueller Koordinate Helligkeit L^* .

Bild 6_29 gleichabständige Grau-
stufungstufung 8691_1 Gleichabständige Farbstufung von Grau-
reihen mit der Helligkeit L^* als Funktion
des Hellbezugswerts Y für weißes, mittel-
graues und schwarzes Umfeld

Die Helligkeit L^* als Funktion des Hellbezugswerts ist von der internationalen Beleuchtungskommission im Farbenraum CIELAB 1976 festgelegt worden. Man definiert 100 Helligkeits-Stufen zwischen absolutem Schwarz und Weiß. Hellbezugswerte Y = 0 und Y = 100 sowie die Helligkeiten $L^* = 0$ und $L^* = 100$ kann man nicht durch Oberflächenfarben herstellen.

Die Helligkeitsfunktion L^* der CIE wird durch die in **Bild 6_29** beschriebene Potenzfunktion mit dem Exponent 1 / 2,4 gut approximiert. Für Adaptation auf weißes Papier gilt die obige Formel mit dem Exponenten 1 / 2 und für Adaptation auf schwarze Umgebung die untere Formel mit dem Exponenten 1 / 3. Diese beiden Formeln führen zu zwei Geraden in doppelt-logarithmischer Darstellung, wie im nächsten **Bild 6_30** dargestellt.

Bild 6_30 Kennlinien für weiße und
schwarze Umgebung 8691_2 Kennlinien für weißes Papier und dunkle
Bildschirmumgebung: logarithmischer Zu-
sammenhang zwischen Helligkeit L^* und
Hellbezugswert Y

Bei Adaptation auf weißes Papier einerseits und bei Adaptation auf die normalerweise relativ dunkle Bildschirmumgebung andererseits müssen die Hellbezugswerte für eine visuell gleichabständige Stufung etwas unterschiedlich sein. Das Bild 6_30 zeigt die visuelle Helligkeit L^* als Funktion des Hellbezugswerts auf Papier. Die beiden roten Linien markieren die physikalischen Grenzen der Hellbezugswerte von weißem Papier und des mit der Druckfarbe Schwarz vollständig bedruckten Papiers (Werte für Meßgeometrie 45^o/0^o).

Farl	oheit	Hellbezugsy	wert Y
N^*	<i>L</i> *	$Y = (L^*/10)^2$	$^{2} Y = (L^{*}/10)^{3}/9$
0	90	81 Y _{max}	81,0 Ynormiert
2	80	64	56,9 (=YPapier)
4	70	49	38,1
6	60	36	24,0
8	50	25	13,9
10	40	16	7,1
12	30	9	3,0
14	20	4	0,9
15	15	2,25 Y _{min}	0,4

Bild 6_31 Helligkeit und Hellbezugswert für zwei Umfelder 8691_3 Kennlinien für weißes Papier und dunkle Bildschirmumgebung: Zusammenhang von Schwarzheit N^* (16 Stufen), Helligkeit L^* und Hellbezugswert Y

Nach **Bild 6_31** bedeutet dies in der Praxis, daß für weiße Umgebung eine quadratische und für schwarze Umgebung eine kubische Stufung als Funktion der physikalischen Meßgröße Hellbezugswert gilt. Die Formeln und einige Zahlenwerte enthält die Tabelle in Bild 6_31 für die geraden Schwarzheitsstufen und zusätzlich für Nr. 15.

An dieser Stelle kann auch die umgekehrte Fragestellung diskutiert werden: Welche Hellbezugswerte Y gehören zu den 16 visuell gleichabständigen Helligkeitsstufen $L^* = 15, 20, 25, ..., 90$? Diesen 16 Helligkeitstufen entsprechen die CEPT-Helligkeitsstufen 0, 1, 2, ..., 15.

Linear-Scan-	· Helligkeits-	Far	:bheit	Farb-
Bereich Y	Bereich L*	<i>L</i> *	h*	Nr. d
76,6 85,5	87,5 92,4	90	FFF	4095
60,1 68,1	77,5 82,4	80	DDD	3549
45,6 52,5	67,5 72,4	70	BBB	3003
33,1 39,0	57,5 62,4	60	999	2457
22,6 27,5	47,5 52,4	50	777	1911
14,1 18,0	37,5 42,4	40	555	1365
7,6 10,5	27,5 32,4	30	333	819
3,1 5,0	17,5 22,4	20	111	273
1,6 3,0	12,5 17,4	15	000	0

Bild 6_32 Lineare Scannersignale und
Helligkeit 8691_4 Lineare Scannersignale bei Papier-
Abtastung und Umrechnung in Helligkei-
ten L^* und Codierungen n und d für den
Farbspeicher

Bild 6_32 gibt eine formelmäßige Antwort auf die Fragestellung. Die linearen Scanner-Werte (Hellbezugswerte *Y* mit geeigneter Normierung) wurden nach der im Bild 6_29 angegebenen Formel für weißes Papier umgerechnet auf Helligkeiten L^* . Zwischen Hellbezugswert *Y* und der Helligkeit L^* besteht ein nichtlinearer (quadratischer) Zusammenhang. Unterschiedlich breiten Hellbezugswertbereichen entsprechen daher gleiche Helligkeitsdifferenzen. Durch eine Kennlinie, d. h. die Gleichung:

$$L^* = 100 (Y / 100)^{1/2},$$

müssen entsprechende *Y*-Bereiche in entsprechende L^* -Bereiche umgerechnet werden. Die Helligkeitsstufen L^* haben die Werte $L^* = 15, 20, 25, ..., 85, 90$, welche allein im Druck technisch realisierbar sind. Diesen Helligkeitsstufen werden im digitalen Farbspeicher die Ziffern 0, 1, 2, ..., 15 zugeordnet, das heißt 16 visuell gleichabständige Stufen.

Farbheit	Schwar	<mark>z- Hellbezug</mark> s-	Bedek-
0* L* V*	heit N*	wert Y	kung b
15,15,15	0	81 Y _{max}	0,00
13,13,13	2	64	0,22
11,11,11	4	49	0,41
9, 9, 9	6	36	0,57
7, 7, 7	8	25	0,71
5, 5, 5	10	16	0,83
3, 3, 3	12	9	0,91
1, 1, 1	14	4	0,98
0, 0, 0	15	$2,25 Y_{\min}$	1,00

Bild 6_33Farbheiten und	
Rasterflächendeckung	8681_5
Kennlinien zwischen Farbheit	ten <i>O</i> *, <i>L</i> *
und V^* sowie Schwarzheit N^*	und Hellbe-
zugswert Y sowie Flächenbed	eckung <i>b</i> auf
Papier für Graureihe	

Nach diesen Vorbetrachtungen können die 16 Digitalwerte des Farbspeichers den Leuchtdichten der drei Leuchtphosphore am Bildschirm nach farbmetrischen Kriterien zugeordnet werden. Durch Farbmessung von unbunten Stufen am Btx-Bildschirm sollten sich in erster Näherung relative Leuchtdichten oder Hellbezugswerte ergeben, wie sie in **Bild 6_33** angegeben sind. Anstelle der Hexadezimalzahlen wurden hier für die Farbheiten die Ziffen 0 bis 15 benutzt. Für unbunte Farben sind alle drei gleich.

Die Codierungen nehmen im additiven Farbfernsehprozeß von Schwarz nach Weiß in der Helligkeit von 0 bis 15 zu. Im subtraktiven Druckprozeß benutzt man anstelle der Helligkeiten von 0 bis 15 besser die Schwarzheiten, die von Weiß bis Schwarz von 0 bis 15 zunehmen.

Für die geraden Schwarzheiten sind die Hellbezugswerte auf Papier angegeben. Sie liegen bei unbedrucktem Papier bei 81 und bei der Stufe 14 um 4. Man muß eine quadratische Hellbezugswertzunahme erreichen, um eine visuell gleichabständige Graureihe zu erzeugen.

Entsprechend nichtlinear muß der mit Schwarz bedruckte Flächenanteil auf Papier sein. Besonders kritisch ist die Herstellung einer visuell gleichabständigen Stufung in der Nähe von Schwarz beim Druckprozeß, da sich hier durch Rasterpunktverbreiterung (Verschmierung der Rasterpunkte) mehrere dunkelgraue Stufen zum Schwarz hin verändern können.

Wenn man nun grundsätzlich die Btx-Werte am Bildschirm kubisch und auf Papier quadratisch ändert, so erlebt man in einigen Sonderfällen enttäuschende Stufungen. Dieser Fall tritt bei einer Weiß-Gelb-Stufung ein. Hier ändert sich der Hellbezugswert von Weiß nach Gelb nur sehr wenig, weil der blaue Leuchtphosphor nur zu etwa 7 % zum Hellbezugswert des Weiß beiträgt, vgl. Tabelle 5_2 auf Seite 166.

Farbheit <i>O* L* V*</i>	Gelb- heit <i>Y</i> *	Hellbezugs- wert Y	Bedek- kung b
15,15,15	0	81 Y _{max}	0,00
15,15,13	2		0,22
15,15,11	4		0,41
15,15, 9	6		0,57
15,15, 7	8		0,71
15,15, 5	10		0,83
15,15, 3	12		0,91
15,15, 1	14		0,98
15,15, 0	15	76 Y _{min}	1,00

Die quadratische Stufung gilt jedoch nur für die sich stark im Hellbezugswert ändernde Graureihe. In **Bild 6_34** ist eine gleichabständige Reihe Gelb-Weiß dargestellt, die näherungsweise eine *lineare* Abnahme der Blau-Komponente erfordert und auf Papier entsprechend eine *lineare* Zunahme der Flächendekkung. In Kenntnis dieser Tatsache kann man diesen visuellen Nachteil der Farbreihe Weiß–Gelb vermeiden, indem man die Rasterpunkte entsprechend linear steuert. Dies ist nur im Unbuntaufbau möglich, da im Buntaufbau die Graubalance bei einer linearen Zunahme der Flächendeckung von Gelb *Y* zerstört würde. Verbesserte Decoder und Druckmodelle werden diesen visuellen Effekt durch entsprechende Umwandlung der Bitwerte in Leuchtdichtewerte bzw. Flächenbedeckungen berücksichtigen müssen.

Bisher wurde die Schnittstelle vom Farbspeicher zum Monitor bzw. zum Druck betrachtet. Für die Graureihe ist eine kubische bzw. quadratische Kennline von Vorteil. In speziellen Fällen, z. B. bei der Reihe Weiß–Gelb, die fast keine Helligkeitsänderung aufweist, ist eine lineare Stufung visuell angemessen.

Für die Reihen Weiß–Cyanblau und Weiß–Magentarot liegt die farbmetrisch sinnvollste Stufung im Unbuntaufbau etwa in der Mitte zwischen linear und quadratisch (Exponent 1/1,5). Im Buntaufbau ist wegen der Graubalance nur eine quadratische Stufung (Exponent 1/2) im Druckergebnis sinnvoll.

- Empfindlichkeiten = Spektralwerte 2. Minimum 12-Bit Farbbildspeicher
- erzeugt kubische Bildschirm- und quadratische Rasterflächen-Kennlinie
- 3. Minimum 8-Bit Auflösung für lineare lichtelektrische Empfänger

Bild 6_35 zeigt eine Zusammenfassung wesentlicher Ergebnisse dieses Abschnitts. Zur Lösung von Schnittstellenproblemen in der Praxis der Druckindustrie im Bereich Bildkommunikation, das ist der Bereich Farbfilmvorlage, Farbscanner, Farbbildspeicher, Farbmonitor und Rasterflächendeckung, sollten folgende Grundlagen der Farbmetrik und Lichttechnik benutzt werden:

- Der Farbscanner sollte möglichst ein Farbmeßgerät für z. B. 3600 Rasterpunkte/cm² darstellen. Seine *OLV*-Empfindlichkeiten müssen sich angenähert als Lineartransformation der Normspektralwertfunktionen ergeben.
- Der Farbbildspeicher sollte mindestens 12 bit für 4096 Farben umfassen. Die Hard- und Software muß für eine gleichabständige Graureihe eine kubische Leuchtdichteverteilung am Bildschirm und eine quadratische Rasterflächendeckung auf dem Papier ergeben.
- Die lichtelektrischen Empfänger der Bildabtastung arbeiten weitgehend linear. Um eine 16stufige Graureihe zu codieren, müssen mindestens 8 bit

Auflösung, d. h. 256 lineare Stufen, gefordert werden. Diese 256 Stufen können mit einem Prä-Prozessor quadratisch in 16 Stufen geändert werden.

Auf die Art der Flächendeckung wurde bisher nicht eingegangen. Um die 256 Leuchtdichtestufen im Druck zu erzeugen, kann man 16×16 Einzelpunkte in einer Rasterzelle drucken. Beim üblichen Standard-Raster von 60 Rasterzellen/cm ergibt sich eine Kantenlänge der Rasterzelle von 1/6 mm und des Einzelpunkts von 1/100 mm.

Quadratische Rasterzelle (1/6 mm Kantenlänge) aus 16×16 Einzelpunkten (1/100 mm Kantenlänge) für 16stufige gleichabständige Graureihe:

- Stufe $N^* = 1$; 31 Punkte von 256; 12% Flächendeckung,
- Stufe $N^* = 8$; 192 Punkte von 256; 75% Flächendeckung,
- Stufe $N^* = E$; 252 Punkte von 256; 98% Flächendeckung,
- Stufe $N^* = F$; ≥ 255 Punkte von 256; 100% Flächendeckung

Bild 6_36 zeigt eine Füllung der quadratischen Rasterzellen mit 16×16 Einzelpunkten in Zufallsfolge. Da der Einzelpunkt in der Praxis durch den Laser-Filmbelichter eher rund und nicht quadratisch ist, kann keine gezielte Flächendeckung durch Zufallsraster erreicht werden. Im Druck tritt eine Rasterverbreiterung ein, und für die Stufen von etwa C bis F besteht die Gefahr, daß alle Weißpunkte durch die Rasterverbreiterung im Druck verschwinden. Daher ist die in Bild 6_36 gezeigte Füllung der Rasterzelle heute nicht praxisgerecht, jedoch eventuell von zukünftiger Bedeutung, wenn entsprechende neue Technologieen (z. B. quadratische *LCD*-Elemente und fotografische, gezielte Belichtung) auf dem Markt erscheinen.

Moderne digitale Füllungen der Rasterzellen werden in Abschnitt 8.8 "Rasterzellen-Schwellendaten" ab Seite 236 beschrieben.

Rasterzellen-Schwellendaten werden in der Programmiersprache PostScript benutzt, um die Rasterzellen nach farbmetrischen Gesichtspunkten zu füllen. Das Kriterium "Gleichabständigkeit" kann zur Reproduktion der Graureihe dienen.

PostScript läßt auch die Verwendung der CIELAB-Helligkeiten L^* im PostScript-Programmcode zur Beschreibung der Grauflächen zu. Dann werden z. B. auf einem Filmbelichter die Helligkeiten $L^* = 15, 20, ..., 90$ innerhalb vorgegebener Toleranzen (z. B. zwei CIELAB-Einheiten) auf Fotopapier reproduziert, vgl. Abschnitt 8.17 "Definition und Reproduktion von 20 L^* -Helligkeiten" ab Seite 248.

7 Reproduktion mit Druckertechniken

7.1 Reproduktion: 4096 Farben mit Farbmatrixdrucker

Die Reproduktion von Farben mit Matrixdruckern beruht auf dem Druck mit den drei subtraktiven Buntfarben Gelb *Y*, Cyanblau *C* und Magentarot *M* sowie der unbunten Farbe Schwarz *N*. Die entsprechenden Farb-Matrixdrucker, z. B. *Epson* JX-80 (weitgehend identisch mit Schwarz-Weiß-Drucker FX-80), enthalten im Drucker ein Farbband mit diesen vier Farben. Die vier Farben sind im vertikalen Abstand als vier Bänder angeordnet. Die acht Drucknadeln übertragen im Grafikdruck, abhängig von der Ansteuerung der vertikalen Positionierung des Farbbands, jeweils eine Farbe aufs Papier.

In einer Druckzeile sind beim Standard-Matrixdrucker JX-80 drei Auflösungen möglich: 480 (einfache Dichte), 960 (doppelte Dichte) und 1920 (vierfache Dichte) Punkte pro Zeile. Eine Druckzeile besteht aus acht Einzelzeilen. In der Auflösung "einfache Dichte" entsteht ein quadratisches Druckfeld mit 8 × 8 Druckpositionen.

Bild 7_1 zeigt die Druckpositionen von 8×8 Bildpunkten für einen Standard-Farbmatrixdrucker (acht Nadeln vertikal für Grafik) für die Auflösung "einfache Dichte" (480 Punkte / Zeile). An jeder Druckposition können jede der vier Grundfarben (*Y*, *N*, *M* und *C*) gedruckt werden. Die Farben sind durch vier verschiedene Orientierungen der Schraffur angedeutet.

Eine Zeile kann durch einen Matrixkopf-Rücklauf ohne Zeilentransport mehrmals mit einer der vier Farbbandfarben beschrieben werden. Hierzu wird das Farbband vertikal für die entsprechende Farbe jeweils neu positioniert.

Grund-, Mischfarben und Farbnummern eines Farbmatrix-Druckers			
Grundfarbe oder Mischfarbe	Farbe und Farbbezeichnung	Einzel- oder Mischfarbe	Farbnummer
Grundfarben im	N Schwarz	Ν	0
Farbband enthalten	M Magentarot	M	1
	C Cyanblau	С	2
	Y Gelb	Y	4
Mischfarben aus	O Orangerot	Y + M	3
zwei Grundfarben	L Laubgrün	C + Y	5
übereinander	V Violettblau	M + C	6
Mischfarben aus drei Grundfarben	N Schwarz aus drei Buntfarben	Y + C + M	1+2+4 nacheinander

Tabelle 7_1 Grund- und Mischfarben von Farbmatrixdrucker7321_3Grund- und Mischfarben eines Farbmatrixdruckers; Druck der Farben über Farbnummern 0 bis 6 (Matrixdrucker JX-80 der Fa. *Epson*)7321_3

Tabelle 7_1 beschreibt die Grund- und Mischfarben eines Farbmatrixdruckers sowie die zur Ansteuerung notwendige Farbnummer. Die Nrn. 0 bis 6 gelten für einen Matrixdrucker JX-80 der Fa. *Epson*.

```
Basic-Programmcode für Farbstreifen mit Farbmatrix-Drucker
110 FOR K=0 TO 6
120 LPRINT CHR$(27);"r";CHR$(K);
130 LPRINT "Farbbandfarbe";K;
140 LPRINT CHR$(&H1B);"L";CHR$(100);CHR$(0);
150 FOR I=0 TO 100
160 LPRINT CHR$(&HFF)
170 NEXT
180 LPRINT CHR$(27);"E";":Bit Image";CHR$(27);F
190 NEXT
200 LPRINT CHR$(27);"r";CHR$(0)
210 END
```

Tabelle 7_2Standardfarben mit Farbmatrixdrucker 7321_7 Basic-Programm zur Erzeugung einer Standard-Farbmatrixdruckerausgabe mit denFarben N, M, C, V, Y, O und L über eine Farbnummer K = 0, 1, ..., 6

Tabelle 7_2 zeigt ein Basic-Programm für einen PC unter *MS-DOS* zur Erzeugung einer Ausgabe auf einem Standard-Farbmatrixdrucker mit den Farben *N*, *M*, *C*, *V*, *Y*, *O* und *L* über eine Farbnummer K = 0, 1, ..., 6. Die Zuordnung von Farbnummern und Farben ist in Tabelle 7_1 auf Seite 198 beschrieben. Es werden alle acht Druckpositionen (Hexadezimal FF, in Zeile 160) 100mal (Schleife 150 bis 170) als Farbbalken mit einfacher Dichte gedruckt.

Bei einfacher Dichte (480 Punkte / Zeile) haben die Punkte horizontal und vertikal nahezu den gleichen geometrischen Abstand. Bei doppelter Dichte (960 Punkte / Zeile) und vierfacher Dichte (1920 Punkte / Zeile) überlappen sich die Punkte in einer Zeile doppelt oder vierfach, jedoch um den Punktabstand 0,5 bzw. 0,25 versetzt

Für Overheadfolien ist gegenüber Papier ein zweifacher Farbauftrag für jede Farbe sinnvoll. Bei Aufsichtfarben (Papierdruck) fällt das Licht durch die Druckschicht auf das weiße Papier, wird reflektiert und tritt dann nochmals durch die transparente Druckschicht, um ins Auge zu fallen. Dies wird bei Overheadfolien durch die doppelte Druckfarbenschichtdicke simuliert. An manchen Bildstellen sind daher zwei bunte Farben (z. B. Y und C) sowie Schwarz N nötig, eventuell mit doppeltem Farbauftrag für Overheadfolien.

Bild 7_2 zeigt die Druckpositionen eines Standard-Farbmatrixdruckers bei doppelter Dichte (960 Punkte/Zeile) und vierfacher Dichte (1920 Punkte / Zeile). Die quadratische 2 × 2-Rastermatrix wird durch 8 × 2 Punkte bei vierfacher Dichte bedruckt. Entsprechend ist die quadratische 8 × 8-Rastermatrix durch 32×8 Punkte bei vierfacher Dichte bedruckt.

Viele Farbgrafiken enthalten heute eine Bildpunktmatrix von mindestens 320 Spalten und 240 Zeilen. Oft ist die doppelte Auflösung 640×480 üblich.

In der CEPT-Mosaikgrafik ist zusätzlich eine Matrix 480×240 definiert, wobei der Matrixpunkt nicht quadratisch, sondern rechteckförmig im Format x : y = 2/3 : 1 genormt ist. Diese Definition hat Vorteile wegen der überwiegend rechteckförmigen Buchstabenraster. Eine geometrische Umrechnung $480 \cdot 2/3 = 320$ führt auch hier auf das geometrisch quadratische Raster 320×240 Punkte.

Farbheit <i>O* L* V*</i>	Schwarz heit N*	- Hellbezugs- wert Y	Bedek- kung b
15,15,15	0	81 Y _{max}	0,00
13,13,13	2	64	0,22
11,11,11	4	49	0,41
9, 9, 9	6	36	0,57
7, 7, 7	8	25	0,71
5, 5, 5	10	16	0,83
3, 3, 3	12	9	0,91
1, 1, 1	14	4	0,98
0, 0, 0	15	2,25 Y _{min}	1,00

Bild 7_3Kennlinien Hellbezugswertund Flächendeckung 8691_5 Kennlinien zwischen Farbheiten O^*, L^* und V^* sowie Schwarzheit N^* und Hellbe-zugswert Y sowie der Flächenbedeckung bauf Papier für Graureihe

Bild 7_3 ist eine Verkleinerung eines Bildes in CEPT-Geometriegrafik $(320 \times 240 \text{ Bildpunkte})$ mit 16 Graustufen. Im Bild sind nur die geraden Schwarzheitsstufen und zusätzlich Schwarz reproduziert, die ungeraden fehlenden Zwischenstufen sind jedoch ebenfalls druckbar. Wie können diese 16 Farbstufen erzeugt werden?

Die Druckmatrix besteht bei der Bildbreite von 5,4 cm aus Rasterzellen der Kantenlänge 1 / 6 mm, die mit 24×24 Einzelpunkten gefüllt sind. Das Standardraster mit 60 Linien / cm oder 150 Linien / inch (150 lpi) wurde mit einem Laser-Filmbelichter der Auflösung 3600 dpi erzeugt.

Das Bild 7_3 wurde auch als Bild 6_33 auf Seite 192 aus 22×22 Einzelpunkten mit Rasterzellen-Schwelldaten gedruckt. Dieses Verfahren wird in Abschnittt 8.8 behandelt. Teilweise sind dann horizontale und vertikale Rasterzellen vedoppelt, um die Standard-Bildgröße 5,4 cm \times 4,0 cm zu erreichen.

Der Standard-Matrixdrucker liefert bis zu 1920 Punkte / Zeile, so daß für 240 Bildpunkte je acht Matrixpunkte ($240 \times 8 = 1920$) zur Verfügung stehen. Es bietet sich daher an, die CEPT- und anderen Computergrafikbilder spaltenweise auf Matrixdruckern auszugeben. Ein Nachteil ist dann die Drehung des Bildes im Vergleich zur Schreibrichtung um 90°. Der wesentliche Vorteil ist eine Reproduktion aller 4096 Farben jedes Farbbilds auf einem Blatt Papier oder auf Overheadfolie im Format DIN-A4. Das Bildformat beträgt 240 : 320 = 3 : 4. Die Bildgröße ergibt sich angenähert zu 18 cm : 24 cm und ist auch für Overheadfolien mit 4096 Farben sehr gut geeignet. Eine quadratische Fläche kann mit 8×2 Bildpunkten gefüllt werden, um 16 Farbstufen zu erzeugen.

Bild 7_4Stufenreproduktion mit Matrixdrucker 8340_6 Stufen-Reproduktion mit Standard-Farbmatrixdrucker. Die Stufen "1" bis "7" werden durch geeignete Positionierung der acht Matrixpunkte im 2 × 1-Rasterfeld erzeugt.

Bild 7_4 zeigt die Stufen-Reproduktion mit dem Standard-Farbmatrixdrucker. In Zeilen-Richtung findet eine starke und in Spalten-Richtung nur eine geringfügige Überlappung der Bildpunkte statt. Zur Erzeugung von $2 \times 8 = 16$ Farbstufen müssen besondere Rasterfüllungen gewählt werden, die in Bild 7_4 skizziert sind. Für die Stufe "0" (Weiß) wird das Papier nicht bedruckt. Für die Stufen "1" bis "7" werden die im Bild 7_4 gezeichneten Füllungen gewählt. Die in Bild 7_4 nicht bedruckte zweite Zeile (hier beschriftet mit den Ziffern "1" bis "8") erlaubt weitere sieben Stufen. Auf diese Weise entstehen 1 + 7 + 7 Stufen, die noch durch die Vollflächendeckung (alle 16 Matrixpositionen der 8×2 -Rasterzellen-Positionen bedruckt) ergänzt werden.

In der Regel sind die Matrixpunkte nicht quadratisch, sondern rund. Dadurch werden die "Ecken" erst gefüllt, wenn auch die erste und achte Position durch Übereinanderdruck entsteht. Für die Druckfläche eines 2×2 -Rasters, das durch 8×2 Punkte gefüllt wird, ergeben sich mit der Methode von Bild 7_4 16 Graustufen bzw. 4096 Farben. Offen bleibt zunächst, ob die Stufung farbmetrisch sinnvoll ist und nahezu visuell gleichabständige Stufen liefert. Im Einzelfall ist es sehr wichtig, wie die Flächenfüllung durch die "runden" Matrixpunkte wirklich aussieht.

7.2 Fotomechanische Druckfilm-Herstellung am PC

Sowohl bei Matrixdruckern als auch bei Linien-Laserbelichtern tritt teilweise eine farbmetrisch ungünstige Stufung der Graureihe und der anderen Farbreihen auf, die durch die begrenzte Auflösung der einfacheren Geräte bedingt ist. Laser-Punktbelichter mit 1/100 mm Punktgröße sind teuer (ca. 100 000 DM), so daß sie für den normalen Anwender nicht in Frage kommen, auch ist der Speicheraufwand um den Faktor $16 \times 16 = 256$ Einzelpunkte größer und damit am PC ebenfalls nicht oder kaum einsetzbar. Mit der Programmiersprache PostScript, vgl. Kapitel 8, lassen sich diese Schwierigkeiten weitgehend überwinden.

Daneben lassen sich diese Schwierigkeiten wirtschaftlich mit maskengesteuerten Geräten auf fotomechanischem Wege preiswert und mit guter Genauigkeit überwinden. Das folgende Bild zeigt Masken für fünf Graustufen, die mit einer Matrix von 24×24 Einzelpunkten erzeugt wurden. Die Maskengröße beträgt 1 mm².

Bild 7_5 zeigt Fotomasken für fünf gleichabständige Farbstufen. Für die fünf Stufen eines Farbauszugs sind nur jeweils vier Masken notwendig, da die Belichtung für den weißen Bildpunkt (weißes Papier) jeweils entfällt. Der folgende optische Aufbau erlaubt eine Abbildung von 16 Masken vom Bild 7_5, die zweckmäßig alle in *z*-Richtung in Reihe angeordnet werden.

Bild 7_6 zeigt den optischen Aufbau zur Abbildung von Fotomasken (Bewegung in *z*-Richtung) auf einen Druckfilm (Bewegung in *x*- und *y*-Richtung). Die Zielgröße der Rasterzelle ist mit 1/6 mm angegeben.

Die Maske wird mit einer ständig brennenden Halogenlampe durch ein LCD-Element (Schaltzeit 10^{-6} s, Lichtschaltverhältnis 1 : 1000) "maskenweise" auf den Druckfilm belichtet. Der Druckfilm muß in *x*- und *y*-Richtung bewegt werden. Als Rasterabstand dient hier vorzugsweise 1/6 mm in *x*- und *y*-Richtung. Die Bewegung der Maske ist durch die Achse *z* gekennzeichnet. Die Bewegung der drei Achsen und die Belichtung mit der Lichtdiode wurde über Positionier-Steuerungen der Fa. *Isert*-Elektronik realisiert.

Obwohl $16 \times 16 = 256$ (oder 24×24) Einzelpunkte auf einmal belichtet werden und der Zeitfaktor 256 auf diese Weise eingespart wird, ergeben sich für einen DIN-A4-Druckfilm mehrere Stunden Belichtungszeit. Die fotomechanische Belichtung dürfte dennoch in manchen Fällen sinnvoll sein, da sie sich am PC mit Investitionen um DM 5 000 inklusive Interface für *z*- und *xy*-Bewegungseinheit für das Filmformat DIN-A4 realisieren läßt. Die Masken wurden auf eine Glasplatte belichtet. Die Entwicklung der Filme ist in einer Schale möglich.

Die rein elektrooptisch arbeitenden Industriebelichter (z. B. von den Firmen *Agfa* oder *Linotype-Hell*), die etwa den Faktor 20 mehr kosten, erfordern Belichtungszeiten von einigen Minuten für eine DIN-A4-Seite.

Die BAM hat einen optoelektronisch und mechanisch arbeitenden DIN-A2-Filmbelichter gebaut. Mit diesem können die vier DIN-A4-Farbauszüge auf einen DIN-A2-Druckfilm belichtet werden. Eine Belichtung während des Filmtransports mit Druckfilmbewegung in vier Richtungen (Y horizontal 0[°], Nrechtsdiagonal 45[°], M vertikal 90[°] und C linksdiagonal 135[°]) ergab eine weitere Beschleunigung.

7.3 Druckfilm-Herstellung mit Laserdruckern

7.3.1 Rasterabstand Laserdrucker

Auf Laserdruckern lassen sich über Liniensoftware mit PostScript von *Adobe Systems* Rasterlinien erzeugen. Damit sind die im Abschnitt 7.1 angegebenen Rasterlinien mit vier Orientierungen erzeugbar. Die Laserdrucker haben eine Standardauflösung von 300 Punkten / inch. Der Einzelpunkt- bzw. Rasterabstand ergibt sich zu:

inch / 300 = 2,54 cm / 300 = 0,083 mm.

Bei alleiniger Verarbeitung von Pixeln der Größe 5×5 Einzelpunkte ergeben sich Linienbreiten von:

 $5 \cdot 0,083 \text{ mm} = 0,42 \text{ mm}.$

Diese Breite übertrifft diejenige von normalen Stiftplottern (0,3 mm) oder Standard-Matrixdruckern (0,4 mm). Die in Abschnitt 7.1 beschriebene Technik ergibt für 320×240 Bildpunkte mit einer 5×5 -Zellmatrix eine Druckgröße von 13,3 cm \times 10 cm, die bequem auf einer DIN-A4-Seite im Hochformat Platz hat.

7.3.2 Rasterabstand Farbmatrixdrucker

An dieser Stelle ist ein *Vergleich mit dem Standard-Matrixdrucker* JX-80 oder FX-80 der Fa. *Epson* sinnvoll, denn die spezielle Punktansteuerung des Laserdruckers ist vergleichbar mit der des Farbmatrixdruckers von Abschnitt 7.1. Der Matrixdrucker hatte den Druckzeilenabstand 1 / 8 inch mit acht Einzelzeilen im Druckkopf. Man berechnet daher für den Farbmatrixdrucker JX-80 die Linienbreite:

(1 / 8) inch / 8 = 2,54 cm / 64 = 0,4 mm.

Für 320×240 Bildpunkte ergibt sich mit quadratischen 2×2 -Pixeln die Bildgröße:

 $320 \cdot 0.8 \text{ mm} \times 240 \cdot 0.8 \text{ mm} = 25.6 \text{ cm} \times 19.2 \text{ cm}.$

Diese Bildgröße ist auf einer DIN-A4-Seite nur im Querformat ausdruckbar. Durch doppelte Dichte oder vierfache Dichte wird der Rasterabstand von 0,4 mm auf 0,2 mm bzw. 0,1 mm erniedrigt. Dieser Rasterabstand ist dann mit dem des Standard-Laserdruckers (300 lpi und 0,083 mm Rasterabstand) vergleichbar. Der Farbmatrixdrucker ist jedoch auch bei vierfacher Dichte wegen der großen Punktgröße (0,4 mm) nicht zur Druckfilmherstellung geeignet.

7.3.3 Rasterabstand und Druckfilm-Herstellung

Verschiedene Standard-Laserdrucker mit 300 Punkten / inch, d. h. einem Rasterpunktabstand von 0,083 mm, zeigen einen *Punktdurchmesser*, der annähernd dem *zweifachen Rasterabstand* entspricht. Daher ergibt sich eher beim Druck von zwei der fünf Punkte des Pixels eine gewünschte Rasterflächendekkung von 70% für Mittelgrau. Je nach gewünschter Rasterflächendeckung besteht durch Wahl von ein bis drei Punkten von fünf Punkten des Pixels eine mögliche Freiheit in der Wahl der Rasterflächendeckung für die Graustufen. Mit einer 5×5 -Zellmatrix sind wegen der Punktdurchmesser mit zweifachem Rasterabstand aus farbmetrischer Sicht nur drei gleichabständige Graustufen *zwischen* Weiß und Schwarz sinnvoll; es können also insgesamt fünf Stufen erzeugt werden. Zur Erzeugung von acht Farbstufen müssen entsprechend eine 8×8 -Zellmatrix und für 16 Farbstufen eine 16×16 -Zellmatrix gewählt werden. Die entsprechenden Bildgößen ergeben sich zu:

- 8 × 8-Matrix: 320 · 8 · 0,083 mm × 240 · 8 · 0,083 mm = 21,4 cm × 16,0 cm
- 16×16 -Matrix: 320 · 16 · 0,083 mm × 240 · 16 · 0,083 mm = 42,8 cm × 32,0 cm

Mit einer 8×8 -Zellmatrix ist das Bild nur im DIN-A4-Querformat darstellbar, und es ergeben sich $8 \times 8 \times 8 = 512$ Farben. Diese Farbanzahl dürfte für viele Fälle (technisches CAD, Kartografie) ausreichen.

Druckvorlagen für 16 Graustufen bzw. 4096 Farben erfordern nach diesen Betrachtungen einen DIN-A3-Laserdrucker mit der Auflösung 300 dpi oder einen DIN-A4-Laserdrucker mit der Auflösung 600 dpi (z. B. *HP Laserjet 4M*). Dann darf jedoch auch der Toner nur den halben Punktdurchmesser erzeugen. Die Eigenschaften Punktdurchmesser und Rasterabstand sind von wesentlicher Bedeutung für eine Druckfilmherstellung mit Laserdruckern und müssen möglichst ermittelt werden.

Die z. B. aus den 8×8 -Zellmatrizen hergestellten Druckvorlagen können fotografisch auf 5,3 cm \times 4 cm verkleinert und dann als Druckfilme für 4096 Farben benutzt werden. In vielen Fällen wird jedoch dieser Weg nicht zu der gleichen Qualität führen wie eine Belichtung der Druckfilme mit einem Laserbelichter von 3600 dpi Auflösung. Zur Erzeugung einzelner Farbbilder für Veröffentlichungen kann der Weg jedoch sinnvoll sein. Die Flächendeckung der Raster sollte für die vier Farbauszüge entsprechend Bild 7_5 auf Seite 202 gesteuert werden.

7.4 Text-Bild-Editoren und digitaler Farbspeicherbedarf

Die Entwicklung zu Text-Bild-Systemen mit Schriften in Fotosatzqualität und 16 Millionen Farben wird insbesondere durch die rapide Entwicklung der Speichertechnik kostengünstig ermöglicht.

Die Schwierigkeit liegt insbesondere in der Integration von Bildern mit vielen Farben in den Text. Dann kann das Seitenlayout in der Regel nicht nur zeilenweise wie bei Schwarz-Weiß bearbeitet werden, sondern entsprechend den Bildinhalten muß der Speicher zur Herstellung der Farbauszüge oft zusätzlich spaltenweise und diagonal bearbeitet werden und deshalb als "Ganzseitenspeicher" vorliegen. Durch Bildschirmtext wird eine besonders effektive Speicherung der Bildinhalte vorgenommen. Diese Datenkomprimierung ergibt sich automatisch beim manuellen Erzeugen von Seiten durch die (großen) Pixelgrößen (10×12 -Raster) und wird durch die wenigen Einzelpunkte an wichtigen Bildstellen kaum beeinflußt.

Gleiches gilt für PostScript-Bilder, die durch Geometriegrafik beschrieben werden. Eine Speichereinsparung ergibt sich auch durch die in PostScript festgelegten Datenkompressionen für Bilder.

Komplexe Bilder, z. B. von einer Videokamera mit kontinuierlichen Farbübergängen, scheinen sich wegen der nur 32 in Btx möglichen Farben und der relativ großen Btx-Pixelgrößen einer sinnvollen Weiterbearbeitung in Btx zu entziehen. Dies ist jedoch nicht grundsätzlich so.

Bilder vom Grafiktablett oder einer Videoquelle können per Programm in (größere) Btx-Zeichen umgerechnet werden. Auch Farbbilder mit 4096 Farben können durch eine automatische Umwandlung in *drei Graubilder zu 16 Stufen* (drei Farbauszüge) als drei Schwarz-Weiß-Bilder übertragen werden. Dann muß natürlich das Empfängerbild aus drei Btx-Teilbildern, z. B. für *O*, *L* und *V*, aufgebaut werden.

Der moderne Btx-Decoder ist ein Software-Decoder (Software-Programm) am Grafik-PC. Seine Software und sein Farbmonitor erlauben die Bilddarstellung mit meist mehr als 4096 Farben ohne zusätzliche Hardware-Kosten.

Der kurzzeitige Farbspeicherbedarf für eine DIN-A4-Farbdruckseite mit 16 Btx-Bildern der Größe 5,4 cm \times 4,0 cm auf dieser Seite ergibt bei 0,01 mm Auflösung:

4 Farbauszüge \times 30 000 \times 20 000 Punkte á 0,01 mm = 2,4 Gbit = 300 MByte.

Dieser hohe Speicherbedarf für eine DIN-A4-Farbseite muß zumindest als kurzzeitiger Rasterspeicher in einem Belichter zur Verfügung stehen. Die entsprechenden PostScript-Dateien am PC erfordern bei Ausnutzung der Datenkompression (nur 4-bit-Farbdaten = 16 Stufen, d. h. 4096 Farben) etwa fünf MByte für vier Farbauszüge.

Die Bilder und Texte dieses Buchs ergeben etwa 1 GByte Speicherbedarf bei optimaler Bildabspeicherung (4 bit) in PostScript als *OLV**-Farbbilddaten. Die Originalbilder in PostScript. oder Btx-Geometriegrafik erfordern einen Speicherbedarf von etwa 10 MByte,

8 PostScript und CIE-Farbräume

8.1 Geräteunabhängige Farbkennzeichnung

Die Codierung, Speicherung und Übertragung von Licht und Farbe sollte möglichst *geräteunabhängig* erfolgen. Eine farbmetrische Kennzeichnung der Farben durch Farbmessung liefert die *geräteunabhängigen* CIE-Normfarbwerte *X*, *Y*, *Z* oder die CIE-Farbwerte *L**, *a** und *b** im Farbenraum CIELAB 1976. Die Farben in Dokumenten werden daher im Industriestandard **PostScript** von Adobe Systems mit CIE-Koordinaten beschrieben. Diese Kennzeichnungsmethode wird auch in einem ISO-CIE-Komitee **TOSCA** (Text and Office Systems Color Architecture) für den Farbdokumentenaustausch genormt.

Die Programmiersprache *PostScript* bietet einen weitgehend *geräteunabhängigen Standard* zur Beschreibung von Text, Grafik und Farbe auf einer Druckseite. In PostScript Level 2 (PSL2) können Farben in einem CIE-Farbsystem beschrieben werden. Diese Farbbeschreibung ist natürlicherweise *geräteunabhängig*. Ein vereinfachtes Schema, das noch nicht die im PSL2-Handbuch beschriebenen Befehle benutzt, beschreibt die drei Farben Mittelgrau, Rot 1 und Rot 2 im CIELAB-Farbenraum.

PostScript-Programmierung eines Layouts mit Farben, die in einem CIE-Farbsystem (hier CIELAB) definiert sind, und ihre Ausgabe auf einem Farbdrucker oder Farbmonitor innerhalb von ISO-Toleranzen

Bild 8_1 zeigt die Definition von drei gleichhellen Farben mit $L^* = 50$, $b^* = 0$ und mit drei unterschiedlichen Rot-Grün-Buntheiten $a^* = 0$, 20 und 40 im Far-

benraum CIELAB 1976. Der Farbdrucker oder -monitor wird die gewünschten CIELAB-Farben nur innerhalb gewisser Toleranzen ausgeben. Entsprechend dem ISO-TOSCA-Ausschuß sind die drei Toleranzstufen \leq 3 CIELAB-, \leq 10 CIELAB- und >10 CIELAB-Einheiten vorgesehen.

Bei Darstellung auf einem Farbmonitor mit der PSL2-Software "Display-PostScript" wird das PostScript-Programm zunächst einen Bildspeicher entsprechend dem PostScript-Programmcode füllen. Dieser Farbbildspeicher wird kontinuierlich mit mehr als 70 Hz ausgelesen und am Farbmonitor dargestellt.

Die Farbmonitore und Farbdrucker verschiedener Hersteller können durch drei Qualitätsstufen beschrieben werden. Mit geeigneten Testfarben, z. B. die 17 CIE-Testfarben nach DIN 6169 "Farbwiedergabe", kann die *Qualitätsstufe des Farbmonitors oder Farbdruckers* ermittelt werden.

Hierzu werden die CIELAB-Daten der 17 CIE-Testfarben in ein PostScript-Programm eingefügt und die am Farbdrucker ausgegebenen oder am Farbmonitor dargestellten Farben gemessen. Ihre mittlere Abweichung gegenüber den Sollfarben definiert die Qualitätsstufe. Der PSL2-Programmcode zur Erzeugung der 17 CIE-Testfarben auf einem Farbmonitor und Farbdrucker wird in Abschnitt 8.16 "Definition und Reproduktion der 17 CIE-Testfarben" ab Seite 246 behandelt.

8.2 PostScript-Programmcode und grafische Ausgabe

Bild 8_2PostScript-AusgabeRasterfeld8321_8Grafische Ausgabe, die das folgendePostScript-Programm erzeugt, mit Textund einem Raster 24 × 24 Zellen innerhalbvon 36 × 36 Linien mit Fadenkreuz

Bild 8_2 zeigt eine grafische Ausgabe, die der folgende PostScript-Programmcode erzeugt, mit Text und einem Raster 24×24 innerhalb von 36×36 Linien mit Fadenkreuz.

PostScript ist eine Seitenbeschreibungssprache für Text und Grafik mit 16 Millionen Farben. In der Regel wird eine DIN-A4-Seite mit Text und Bildern beschrieben und ausgegeben. Diese Ausgabe ist auf einem PostScript-Farbdrucker oder mit Display-PostScript auf einem Farbmonitor möglich. Anschießend folgen der Aufbau und die Ausgabe der nächsten Seite. Die Seiten sind in der Regel voneinander unabhängig. Ein PostScript-Programm benötigt als ersten Befehl die Zeile %!PS-Adobe-3.0 und als letzte Zeile den Befehl showpage für die Ausgabe.

```
PSL1-Programmcode: Raster 24×24 mit Linien horizontal, vertikal und Text
%!PS-Adobe-3.0 B8321-8n.eps 20.10.94
%*BoundingBox: 72 90 226 206
/FS {findfont exch scalefont setfont} bind def
 /MM {72 25.4 div mul} def %Umrechnung Inch -> mm
%%EndProlog
%Nullpunkt Bounding-Box
 72 90 translate
% Einheiten in 0,01 mm und Rahmen 5,4cm x 4,0cm
0.01 MM 0.01 MM scale
15 setlinewidth
 0 0 moveto 5400 0 rlineto 0 4000 rlineto
              -5400 0 rlineto closepath stroke
%Text und Zeichnen
 10 setlinewidth 350 /Times-Roman FS
 100 3250 moveto (Raster) show
 100 2900 moveto (24x24) show
 1000 /Times-Roman FS 100 500 moveto (0) show
% neuer Rastermittelpunkt und Nullpunkt
   3300 2000 translate
% 36 Linien horizontal und vertikal
 -1800 100 1800 {dup -1850 moveto 1850 lineto} for stroke
-1800 100 1800 {dup -1850 exch moveto 1850 exch lineto}
                   for stroke
% fetteres Quadrat und Nullkreuz
    40 setlinewidth
 -1200 -1200 moveto 2400 0 rlineto 0 2400 rlineto

-2400 0 rlineto closepath stroke

-1900 0 moveto 3800 0 rlineto stroke
      0 -1900 moveto 0 3800 rlineto stroke
showpage
```

Bild 8_3PostScript-Programm Rasterfeld

C8321_8

PostScript-Programm zur Erzeugung der grafischen Ausgabe von Bild 8_2. Der erste Teil wird auch für die folgende grafische Ausgabe (*Siemensstern*) benutzt.

Bild 8_3 zeigt einen PostScript-Programmcode, der die grafische Ausgabe von Bild 8_2 erzeugt. Im folgenden werden einige einfache PostScript-Programme beschrieben, die grafische Ausgaben erzeugen. PostScript-Programme werden durch Kommentarzeilen oder Zusatztexte, die mit dem Zeichen "%" beginnen, erläutert. Die Befehle und Bedeutungen sind ausführlich im PSL2-Handbuch (1990) beschrieben. PostScript-Programme können mit jedem Editor am PC geschrieben werden und zu einem PostScript-(Farb-)Drucker gesandt werden, der sie interpretiert und seitenweise (eventuell mit Fehlermeldungen) ausgibt. Die folgende grafische Ausgabe zeigt ein wichtiges Testelement für die Ermittlung der Auflösung von Farb- und Schwarz-Weiß-Geräten.

Bild 8_4PostScript-Ausgabe Siemensstern 8260_5 Testelement (Siemensstern) zur Ermittlung des Auflösungsvermögens des PostScript-Ausgabegeräts

Bild 8_4 zeigt ein Testelement (Siemensstern) zur Ermittlung des Auflösungsvermögens des PostScript-Ausgabegeräts. Die Mitte des Auflösungselements wird mit zunehmender Auflösung des Laserdruckers oder Belichters (bei abnehmender Punktgröße) genauer dargestellt.

```
PSL1-Teilprogrammcode: Text und Zeichnen Rosette (Siemensstern)
    10 setlinewidth
    350 /Times-Roman FS
    100 3250 moveto (Rosette) show
    100 2900 moveto (10 Grad) show
    100 2550 moveto (Radius) show
    100 2200 moveto (1,8 cm) show
    %neuer Rastermittelpunkt und Nullpunkt
    3300 2000 translate
    %Zeichnen der Rosette, Radius 1,8 cm
    0.0 setgray
    0 10 350 {newpath 0 0 moveto 0 0 1800
    4 -1 roll dup 5 add arc closepath fill} for
    showpage
```

Bild 8_5PostScript-Programm Siemensstern

C8260_5

PostScript-Programmcode (zweiter Teil) für die grafische Ausgabe von Bild 8_4. (Das vollständige Programm ergibt sich aus dem Programmcode Bild 8_3 bis %Text und Zeichnen und diesem Teil.)

Bild 8_5 zeigt PostScript-Programmcode zum Zeichnen des Siemenssterns, dargestellt in Bild 8_4.

8.3 Rastermodell von PostScript

Bild 8_6 Rastermodell von PostScript

Zum Rastermodell von PostScript: Für eine 4×4 -Rasterzelle werden die einzelnen Zellen durch (*x*, *y*)-Koordinaten im Koordinatenrechteck von (-1, -1) bis (1, 1) beschrieben. Die zu setscreen gehörige Rasterfunktion {pop} löscht die *y*-Koordinate, und mit Werten $0 \leq \text{setgray} \leq 1$ wird die Rasterzelle unterschiedlich gefüllt.

Bild 8_6 zeigt das Rastermodell von PostScript. Für eine 4×4 -Rasterzelle werden die einzelnen Zellen durch (x, y)-Koordinaten im Koordinatenrechteck von (-1, -1) bis (1, 1) beschrieben. Die zu setscreen gehörige Rasterfunktion $\{pop\}$ löscht die y-Koordinate, und mit dem Wert 0.75 = setgray wird die Rasterzelle von links nach rechts zu 25% gefüllt, vgl. Bild 8_6 rechts.

Die Rasterzelle kann durch einen Befehl z. B. um 45° gedreht werden:

Beipiel: 075 045 {pop} setscreen (Raster 75 lpi um 45^o gedreht).

Die Form der Füllung der Rasterzelle kann durch verschiedene, zu setscreen gehörige Rasterfunktionen gesteuert werden, vgl. Bild 8_9, Seite 214.

Linienraster sind mit der einfachsten, zu setscreen gehörigen Rasterfunktion möglich.

Beispiel: {pop}

Quadratraster sind mit der folgenden Rasterfunktion möglich:

Beispiel: {abs exch abs add 1 sub}.

Runde Punktraster sind mit der folgenden (komplexen) Rasterfunktion möglich:

Beispiel: {abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1 sub}{dup mul exch dup mul add 1 exch sub} ifelse}.

Die folgenden Bilder veranschaulichen die verschiedenen Rasterfrequenzen (lpi = 12, 75), Rasterwinklungen (45° und 0°) und verschiedenen Rasterformfunktionen (Linien, Quadrate, Punkte) für 16 Graustufen, die hexadezimal in der Schwarzheit *N*^{*} von 0 bis F codiert sind.

Bild 8_7 zeigt Graustufen mit den Schwarzheiten $N^* = 0, 1, ..., 15$, verschiedenen Rasterfrequenzen (12 lpi und 75 lpi) und Rasterwinklungen (45^o und 90^o).

Der folgende PostScript-Programmcode erzeugt Bild 8_7 (oben links).

PSL1-Programmcode: Bildmatrix 32×24 zur Erzeugung von 16 Graustufen %!PS-Adobe-3.0 B8250-1n.eps 20.10.94 %*BoundingBox: 72 90 226 206 /FS {findfont exch scalefont setfont} bind def /MM {72 25.4 div mul} def /proz1 {pop} bind def /proz2 {} bind def %%EndProlog qsave {proz2 } settransfer 12 45 {proz1} setscreen 72 90 translate 32 3600 div 72 mul 240 mul 24 3600 div 72 mul 240 mul scale /DatenString 16 string def %Bild 32x24 von unten nach oben 32 24 4 [32 0 0 -24 0 24] 7FFFFFF00000000000000FFFFFF7 7FFFFFFF11111111111111FFFFFF7 7FFFFFF22222222222222FFFFFF7 7FFFFFF333333333333333FFFFFF7 7FFFFFFF4444444444444444FFFFFF7 7FFFFFF555555555555555555FFFFF7 7FFFFFF6666666666666666FFFFFF7 7FFFFFFF777777777777777FFFFFF7 7FFFFFF8888888888888888887FFFFF7 7FFFFFF9999999999999999FFFFFF7 7FFFFFFAAAAAAAAAAAAAAFFFFFF7 7FFFFFFBBBBBBBBBBBBBBBBBFFFFFF7 7FFFFFFCCCCCCCCCCCCFFFFFF7 7FFFFFFDDDDDDDDDDDDDDDFFFFFF7 7FFFFFFFEEEEEEEEEEEEEEEFFFFFF7 grestore 72 90 translate 6 /Times-Roman FS 6 24 moveto ({} settransfer) show 6 16 moveto (12 45 {pop} setscreen) show 6 8 moveto (12 Linien / inch) show 34 28.75 moveto (0) show %! hier weiterer text 0, 1, ..., F, nicht protokolliert 34 101.0 moveto (F) show showpage

Bild 8_8PostScript-Programm Schwarzheiten $N^* = 0, ..., 15$ C8250_1PostScript-Programmcode für grafische Ausgabe von Bild 8_7 (oben links)

Bild 8_8 zeigt den PostScript-Programmcode für die grafische Ausgabe von

Bild 8_7 (*oben links*). Die Bildmatrix 32×24 befindet sich in der Mitte des Programmcodes. Es muß beachtet werden, daß für Weiß die Codierung "F" und für Schwarz die Codierung "0" notwendig ist, wenn der PostScript-Operator image verwendet wird.

Für Bild 8_7 (*oben rechts*) muß nur die Rasterwinklung von 45° nach 0° geändert werden. Für Bild 8_7 (*unten links*) muß nur die Rasterfrequenz von 12 lpi nach 75 lpi geändert werden.

Die folgenden Bilder veranschaulichen verschiedene Rasterformen: Linien, Quadrat und Kreis:

Bild 8_9Graustufen und

Rasterform 8250_12, 8250_3, 8250_4 Graustufen mit den Schwarzheiten $N^* = 0, 1, ..., 15$, verschiedenen Rasterformen (Linie, Quadrat und Kreis), alle für die Winklung 45^o und 12 lpi:

- Linienraster (*oben links*),
- Quadratraster (*oben rechts*),
- Kreisraster (unten links)

Bild 8_9 zeigt Graustufen mit den Schwarzheiten $N^* = 0, 1, ..., 15$, verschiedenen Rasterformen (Linie, Quadrat und Kreis), alle für die Rasterwinklung 45° und die Rasterfrequenz 12 lpi.

Mit der Rasterfunktion /proz2, die im PostScript-Befehl settransfer benutzt wird, kann die Schwarzheit beeinflußt werden. Die folgenden Bilder zeigen die in Bild 8_9 dargestellten Quadratraster mit drei verschiedenen Transferfunktionen.

Bild 8_10 zeigt Graustufen mit den Schwarzheiten $N^* = 0, 1, ..., 15$, für 45° , 12 lpi und verschiedenen Transferfunktionen mit den Exponenten: 1 (lineare Funktion), 1/2 (Quadratwurzel-Funktion) und 2 (Quadrat-Funktion).

Zum Schluß soll für Linienraster unter 45° (üblicherweise Schwarz *N*) die Stufung für eine höhere Rasterfrequenz (75 lpi) und drei Transferfunktionen (linear, Quadratwurzel und Quadrat) gezeigt werden.

Bild 8_11 Graustufen und Transferfunktionen $8251_1, 8251_5, 8260_2$ Graustufen mit den Schwarzheiten $N^* = 0, 1, ..., 15,$ für $45^0, 75$ lpi und verschiedenen Transferfunktionen (linear, Quadratwurzel und quadratisch): • Exponent 1 (linear, *oben links*),

Exponent 1/2 (*oben rechts*),
Exponent 2 (*unten links*)

Bild 8_11 zeigt Graustufen mit den Schwarzheiten $N^* = 0, 1, ..., 15$, für 45°, 75 lpi und verschiedenen Transferfunktionen mit den Exponenten: 1 (lineare Funktion), 1/2 (Quadratwurzel-Funktion) und 2 (Quadrat-Funktion).

8.4 Punkt- sowie Linienraster und Farbmetrik

Die Vor- und Nachteile von Punkt- und Linienrastern werden in diesem Abschnitt gegenübergestellt. Aus farbmetrischer Sicht haben die Quadrat- oder Punktraster einen entscheidenden Nachteil. Im Mitteltonbereich (mittleres Grau) berühren sich bei einer bestimmten Graustufe benachbarte Punkte von Rasterzellen. Dies führt zu einem Schwarzwertsprung, je nach Papier, Auflösung und Drucktechnologie von bis zu 12% im Hellbezugswert.

Bei 50 % Flächendeckung ergibt z. B. eine Änderung vom Hellbezugswert Y = 49 (Schwarzheit $N^* = 6$) zum Hellbezugswert Y = 36 (Schwarzheit $N^* = 8$) in etwa diesen Schwarzwertsprung. Die Helligkeitsänderung beträgt für zwei Schwarzheitsstufen N^* , nach Bild 6_31 auf Seite 191, zehn Helligkeitseinheiten und damit zehn CIELAB-Einheiten.

Durch Verwendung von elliptischen Rastern wird die Berührung der Rasterpunkte von *einer* Stelle zu *zwei* Stellen verschoben, so daß mit zwei Schwarzwertsprüngen von je etwa fünf CIELAB-Einheiten gerechnet werden muß. Diese Sprünge von fünf CIELAB-Einheiten entsprechen etwa 15 Farbschwellen, und sie liegen über der TOSCA-ISO-Toleranz von drei CIELAB-Einheiten für die beste Qualitätsstufe 1 der PostScript-Farbdrucker.

Die Schwarzwertsprünge lassen sich vermeiden, wenn man im Mitteltonbereich **Linienraster** einsetzt. Für sehr helle und sehr dunkle Farben kann sich die Linie zu eine Quasi-Linie verformen, das heißt einer rechteckförmigen Fläche mit der Orientierung des Linienrasters.
Die *Breite* der Quasi-Linie muß jedoch mindestens dem *Zwei- bis Dreifachen* der kleinsten Einzellinienbreite entsprechen. Die heute möglichen Linienbreiten von 0,007 mm sind als Einzellinien mit einem Mikroskop zwar auf dem Druckfilm sichtbar, jedoch technisch nicht mehr druckbar. Hierzu sind zwei oder drei benachbarte Einzellinien notwendig. Auf dem Papier wird die Rasterzellenfläche bei drei benachbarten von z. B. 24 Einzellinien für eine Rasterlinie schon zu 12% bedeckt.

Die Methoden zur Erzeugung der Quasi-Linienraster, ihre Winklungen und Flächenfüllungen nach farbmetrischen Gesichtspunkten werden im folgenden dargestellt und diskutiert.

Ein weiterer wesentlicher Vorteil der Linienraster besteht in der höheren Stabilität des Drucks. Ein Punkt kann sich in *alle* Richtungen bei Variation des Andrucks der Druckwalze ausdehnen, eine Linie nur nach *zwei* Richtungen, so daß sich automatisch eine höhere Stabilität ergibt.

Bei Punktrastern verbreitert sich der Rasterpunkt linear mit dem Kreisumfang, das heißt, er nimmt mit $2 \pi r$ zu. Erreicht der Radius r die halbe Rasterkantenlänge, so entsteht ein Tonwertsprung. Anschließend nimmt die Rasterpunktverbreiterung bis zur vollen Füllung der quadratischen Rasterzelle wieder ab. Die Rasterpunktverbreiterung ist bei Punktrastern daher stark nichtlinear, bei Linienrastern mit einer Lücke im Mittelbereich ist die Verbreiterung konstant.

Linienraster mit nur vertikalen, horizontalen und diagonalen Strukturen sind einfacher zu erzeugen als Kreis-, Ellipsen- oder Kettenraster. Die BAM hat sie über Fotomasken mit *xy*-Tischen erzeugt, vgl. Bild 7_5 auf Seite 202.

Die bisherigen Untersuchungen über die Anwendung von Linienrastern im Druck zeigen auch entscheidende Nachteile. Diese Nachteile ergaben sich einerseits durch die begrenzte Auflösung der bisherigen Belichter und die so entstehenden Farbsprünge.

Weiter ergaben sich bei einer Ausdehnung der Druckfilme um eine halbe Rasterfrequenz automatisch großflächige Tonwertsprünge um bis zu 12 % und damit großflächige Moiré-Erscheinungen, vgl. *Schoppmeyer* (1982). Diese Untersuchungen basierten jedoch auf Linienrastern mit den Winklungen 0° und 60° anstelle der hier verwendeten von 0° und 45°. Bei der Winklung 45° tritt im Mitteltonbereich eine völlige Symmetrie auf, so daß sich der Tonwertsprung von 12 % bei 60° auf 0 % bei 45° reduziert. Diese Aussage gilt für eine Rasterfilmausdehnung um eine halbe Rasterfrequenz. Falls sich z. B. ein Druckfilm periodisch im Abstand 4 cm um 1/12 mm ausdehnt (für das Standard-Raster 60 Linien/cm gilt 1/6 mm Rasterabstand) treten bei 60° Hell-Dunkel-Strukturen im Abstand von 4 cm auf, bei 45° Rasterwinklung jedoch nicht. Zusammenfassend stellen wir fest, daß mit hochauflösenden Belichtern ab 3600 dpi, die mit 225 lpi ein Rasterfeld von 16×16 (0,1 mm Kantenlänge) füllen oder die mit 150 lpi ein Rasterfeld von 24×24 (0,15 mm Kantenlänge) zulassen, nach visuellen und farbmetrischen Gesichtspunkten mit Linienrastern eine höhere Druckstabilität erreicht wird, so daß die TOSCA-ISO-Toleranz von drei CIELAB-Einheiten für den gesamten Mitteltonbereich erreichbar scheint.

Die TOSCA-ISO-Toleranz ist sehr klein im Verhältnis zur mittleren Abweichung zwischen Aufsichtoriginal und Druck für den gegenwärtigen Standard-Mehrfarbendruck. Diese mittlere Abweichung liegt bei etwa 16 CIELAB-Einheiten, das heißt, der mittlere Farbwiedergabe-Index R_m beträgt ungefähr:

 $R_{\rm m} = 100 - 4.6 \cdot \Delta E^{\star}_{\rm CIELAB} = 25.$

8.5 Druckfilme für Quasi-Linienraster

Die Reproduktion von zunächst 4096 Farben nach farbmetrischen Gesichtspunkten ist unser Ziel. Die Graureihe muß dann zwischen Schwarz (Druckfarbe Schwarz *N*) und Weiß (Papierweiß *W*) visuell gleichabständig gestuft sein. Die visuell gleichabständige Stufung erfordert visuelle Bedingungen, die folgende Kennzeichen tragen:

Die Farbmuster der Graureihe werden *voneinander getrennt* auf grauer Umgebung mit weißem Rahmen dargeboten. Der Sehwinkel der Farbmuster und ihr Abstand betragen etwa ein Grad. Die graue Umfeldleuchtdichte beträgt etwa 100 cd/m². Dies erfordert bei einem Reflexionsfaktor 0,2 des Mittelgrau eine Beleuchtungsstärke von $500 \cdot \pi \ln x \approx 1500 \ln x$.

Das visuelle Auflösungsvermögen des Auges liegt im normalen Sehabstand von 50 cm bei 1/6 mm. Das visuelle Auflösungsvermögen ist abhängig vom Kontrast Papier – Farbe. Der Kontrast ist für die Kombination Papier – Druckfarbe Schwarz N (Hellbezugswert $Y_N = 2$) viel größer als für Magentarot M $(Y_M = 17)$, für Cyanblau C $(Y_C = 21)$ und für Gelb Y $(Y_Y = 76)$.

Weiter ist das visuelle Auflösungsvermögen abhängig von der Beleuchtungsstärke. Der Wert 1/6 mm gilt für etwa 500 lux Innenraum-Beleuchtungsstärke (vgl. DIN 5035). Eine Erhöhung der Beleuchtungsstärke um den Faktor vier verbessert das Auflösungsvermögen um 25%.

In diesem Buch wurden die Druckfilme für 4096 Farben mit Quasi-Linienrastern hergestellt. Die 16 Stufen für die vier Farbauszüge stehen unter unterschiedlichen Winklungen. Wir wählten willkürlich 0° für Gelb *Y*, 45° für Schwarz *N*, 90° für Magentarot *M* und 135° für Cyanblau *C*.

Bild 8_12 zeigt Rasterzellen von 24×24 Einzelpunkten und vier Orientierungen für Gelb *Y* (*oben links*), Schwarz *N* (*oben rechts*), Magentarot *M* (*unten links*) und Cyanblau *C* (*unten rechts*). Im Bild ist nur jeder zweite Einzelpunkt der Rasterzelle dargestellt, um das Prinzip besser zu erkennen. Die angrenzenden Nachbarzellen werden durch eine graue Farbe an zwei Seiten angedeutet. Die Rasterzellen tragen eine Kennzeichnung für die Stufe "8", denn die Fläche ist nur *zur Hälfte* gefüllt. Beim Druckprozeß mit Einzelpunkt-Kantenlänge von 1/100 mm wird wegen der Druckpunktverbreiterung voraussichtlich eine schwarze Vollfläche entstehen, und daher ist diese Art der Füllung der Rasterzelle für die Praxis völlig ungeeignet.

Bild 8_12 soll die geometrische Anordnung klar zeigen, und hierzu bietet die Darstellung Vorteile. Die folgenden Bilder veranschaulichen die nach farbmetrischen Gesichtspunkten ausgewählen Quasi-Linienraster in vier Winklungen. Raster in etwa dieser Form wurden zum Druck der Farbbilder in diesem Buch verwendet.

Die im folgenden dargestellte Zielrasterform ist auf einfache Weise erst mit PSL2 erzeugbar, und zwar über *digitale Rasterzellen-Schwellendaten* in Bild 8_28 ab Seite 236. PSL1 verwendet die Rasterprozedur {pop} zur Erzeugung.

Mit digitalen Rasterzellen ist es zum Beispiel für das Textildesign möglich, Muster zu definieren und diese im Rapport in *x*- und *y*-Richtung beliebig zu wiederholen. In unserem Fall dient als Muster die Flächenfüllung der folgenden 16stufigen Rasterzellen, die entsprechend dem Bildinhalt in den Rasterspeicher gezeichnet und wiederholt werden.

Auch mit Level-1-Belichtern gibt es eine Möglichkeit, diese Level-2-Funktionen zu simulieren. Da im Level-1-PostScript beim Übergang von Benutzer- auf Gerätekoordinaten Sprünge auftreten können, müssen die berechneten Gerätekoordinaten zusätzlich gerundet werden (Befehl setstrokeadjust). Es entstehen so mit Level-1-PostScript um den Faktor drei längere Rechenzeiten. Bei Level-2-PostScript ist diese Rundung meist voreingestellt, und es ergeben sich sogar kürzere Rechenzeiten mit Rundung als ohne.

Grundsätzlich kann festgestellt werden, daß sich die Quasi-Linienraster-Form von der bisher üblichen Punkt- oder Kettenrasterform unterscheidet. Die Wahl dieser quadratischen oder rechteckförmigen Linienrasterform wird erst durch die hohe Auflösung der heutigen Filmbelichter sinnvoll. Diese besitzen entsprechend dem Stand der Technik z. B. eine Auflösung von 3600 dpi mit einer Linienbreite von 0,007 mm und einer Positioniergenauigkeit von 0,005 mm (Herstellerangabe). Die Wahl dieser Linienrasterform wird nur mit dieser hohen Auflösung aus visuellen und farbmetrischen Gründen sinnvoll.

Die folgenden vier Seiten zeigen Farblinienraster für Gelb Y (horizontal, 0°) und Schwarz N (45°), jeweils für die 16 Stufen "0" bis "F". Die Bilder zeigen im einzelnen:

- **Bild 8_13** auf Seite 221: Farbraster Gelb *Y*, horizontal 0^o, Gelbheit-Stufen "0" bis "7"
- **Bild 8_14** auf Seite 222: Farbraster Gelb *Y*, horizontal 0⁰, Gelbheit-Stufen "8" bis "F"
- **Bild 8_15** auf Seite 223: Farbraster Schwarz *N*, diagonal 45[°], Schwarzheit-Stufen "0" bis "7"
- **Bild 8_16** auf Seite 224: Farbraster Schwarz *N*, diagonal 45[°], Schwarzheit-Stufen "8" bis "F"

Bild 8_14 Gelbraster, Stufen 8 bis 15 Farbraster Gelb *Y*, Gelbheit-Stufen ,,8" bis ,,F"

8351_1 bis 8351_8

Farbraster Schwarz N, Schwarzheit-Stufen "0" bis "7"

Auf den letzen Seiten wurden die Farbraster für die vier Grundfarben *Y*, *N*, *M* und *C* des Mehrfarbendrucks behandelt. Sie können als Quasi-Linienraster bezeichnet werden. Nur für sehr helle und sehr dunkle Farben weicht die Rasterform von der Linienform ab und wird zur Rechteckfläche innerhalb der Rasterzelle von 24×24 Einzelpunkten.

Als Winklungen wurden hier horizontal für Gelb *Y*, rechtsdiagonal für Schwarz *N*, vertikal für Magentarot *M* und linksdiagonal für Cyanblau *C* gewählt. Die Winklungen sind vertauschbar, jedoch müssen die vier Grundfarben vier (oder mindestens drei) verschiedene Winklungen besitzen.

Bild 8_19Füllung Rasterzelle, Stufe 138341_5, 8341_6, 8341_7, 8341_8Verteilung der bedruckten Rasterelemente (Schwarz) für die Stufe "D":• für Gelb sind beide Verteilungen gleich geeignet (oben links und rechts),

• für *N* ist die rechte Verteilung günstiger (*unten links und rechts*)

Bild 8_19 zeigt die Verteilung der bedruckten Rasterelemente für die Stufe "D". Für Gelb sind beideVerteilungen gleich geeignet (*oben links und rechts*). Für *N* ist die rechte Verteilung günstiger (*unten links und rechts*). Es wird in der Literatur oft behauptet, daß die visuelle Auflösung für diagonale Richtung geringer ist, und deshalb wird Schwarz *N* mit dem höchsten Kontrast zwischen Papierweiß und Farbe auf 45^o gelegt. Die schwarzen, diagonalen Rechtecke sind im Seitenverhältnis 1,4 : 0,7 gegenüber dem Quadrat der Seitenlänge 1 verformt. Die kleine Kante 0,7 könnte zur geringeren visuellen Auflösung beitragen. Durch Verteilung des offenen Rechtecks der Stufe "D" in Bild 8_19 (*unten links*) auf zwei Rechtecke in Bild 8_19 (*unten rechts*) entstehen zwei gleichförmige Rasterquadratzellen der Kantenlänge 0,7. Es ist zu erwarten, daß diese Verteilung die optimale visuelle Lösung darstellt.

Bild 8_20Füllung Rasterzelle, Stufe 1

8350_2, 8260_3, 8360_2, 8260_4

Verteilung der bedruckten Rasterelemente (Schwarz) für die Stufe "1":

- für Y ist die rechte Verteilung günstiger (oben links und rechts),
- für *N* ist die rechte Verteilung günstiger (*unten links und rechts*)

Bild 8_20 zeigt die Verteilung der bedruckten Rasterelemente für die Stufe "1". Für *Y* ist die rechte Verteilung günstiger (*oben links und rechts*). Für *N* ist die rechte Verteilung günstiger (*unten links und rechts*).

Die Bevorzugung der rechten Verteilung hat im wesentlichen verfahrenstechnische und drucktechnische Gründe:

- Beim Versuch der Abbildung der Linienstruktur von nur 0,007 mm vom Druckfilm auf die Druckplatte wird diese feine Linie meist durch seitliches Randlicht wegbelichtet. Dieser Nachteil kann durch direkte Belichtung der Druckplatten durch den Laserbelichter vermieden werden. Die Tendenz zu dieser Verfahrenstechnologie ist zur Zeit sehr ausgeprägt.
- Die kleinsten druckbaren Punktdurchmesser auf glattem Kunstdruckpapier sind mit 0,01 mm größer als der Rasterabstand und die Linienbreite von 0,007 mm des benutzten Belichters mit der Auflösung 3600 dpi. Mindestens zwei bis drei Laserlinien sind daher notwendig, um eine nur mikroskopisch sichtbare Linie zu erzeugen. Dies wird durch die Verteilung in Bild 8_20 (*oben und unten rechts*) erreicht.

Mit Laserdruckern der Auflösung 300 dpi ergeben sich vergleichbare Erfahrungen. Einzelpunkte und zwei aneinandergrenzende Einzelpunkte im Rasterspeicher führen **nicht** zu einer Punktausgabe (Laserdrucker *DEC LN03*). Ein Minimum von $2 \times 2 = 4$ oder mindestens $3 \times 1 = 3$ benachbarten Einzelpunkten im Rasterspeicher ist notwendig, um Papier zu bedrucken. Jede weitere Vergrößerung der Minimalzelle ergibt eine Vergrößerung des Druckpunkts. Eine Erhöhung der Minimalzelle um einen Punkt, d. h. $2 \times 2 + 1$, ergibt eine Vergößerung des Druckpunkts gegenüber dem kleinsten Druckpunkt 2×2 .

8.6 Rasterelemente über Rechteck-Grafikelemente

Die grundlegenden Grafikelemente des letzten Abschnitts waren mehr oder weniger gefüllte Quadrate und Rechtecke mit 24×24 Rasterpunkten. PostScript erlaubt die Definition von Quadraten oder Rechtecken und deren Füllung mit schwarzer Farbe (0.0 setgray) oder weißer Farbe (1.0 setgray). Im folgenden werden wir die Programmbeschreibungen für 16 Graustufen kennenlernen und anschließend die Bildbeschreibung aus diesen Einzelementen aufbauen.

Das Grafikelement "Quadrat" beschreiben wir in einem Koordinatensystem (0, 0) bis (1, 1), das heißt, wir wählen die Seitenlänge 1 im Benutzerkoordinatensystem. Im Gerätekoordinatensystem des Filmbelichters mit 3600 dpi Auflösung entsprechen diesem Einheitsquadrat 24 × 24 Einzelpunkte. Auf dem Film ergibt sich mit diesen physikalischen Daten ein Rasterelement der Größe $1/6 \text{ mm} \times 1/6 \text{ mm}$ mit 24 × 24 Einzelpunkte.

Wir beschreiben das Rechteck durch vier Koordinaten: dem linken unteren Nullpunkt (x_0 , y_0), die Breite w (= width) und die Höhe h (= high).

```
PSL1-Programmcode: Horizontale Rechteck-Grafikelemente
                                    20.10.94
%!PS-Adobe-3.0 B8260-6n.eps
%%BoundingBox: 72 90 226 206
% Transformation Benutzer- -> Geraetekoordinaten
/Mt { % x y
                  snaptopixel
                                SX SY
 transform
  .25 sub round .25 add exch
  .25 sub round .25 add exch
 itransform moveto} bind def
/HQR { % Zeichnen Basis-Rechteck horizontal (x0 y0 w h)
       4 -2 roll Mt %(x0,y0) untere linke Ecke Rechteck
       dtransform round exch round exch idtransform
       % Transform. Benutzer- -> Geraetekoordinaten
       dup 0 exch rlineto %(0,h) nach oben links
       exch 0 rlineto
                           %(w,0) nach oben rechts
       neg 0 exch rlineto %(0,-h) nach unten rechts
closepath fill} bind def
/O { %voll gefuelltes Basis-Rechteck mit w=r h=1
     /r exch def %Wiederholungsfaktor r
x0 y0 r 1 HQRr} bind def
                                           %r-fach Quadrat
/@ {/r exch def /x0 r x0 add def} bind def %nur x0-Transl.
72 90 translate 0.0 setlinewidth
72 300 div 20 mul dup scale
18t10
            1 13 t 10 O 2 @ 2 O
                                  1 18 t 5 O
20 1 22 { 2 exch t 16 0} for
showpage
```

Bild 8_21 PostScript-Programm Rechteck-Grafikelemente C8260_6 PostScript-Programmcode für die grafische Ausgabe von Bild 8_22 zur Erzeugung horizontaler Rechteck-Grafikelemente für die Druckfarbe Gelb *Y*

Bild 8_21 zeigt einen PostScript-Programmcode zur Erzeugung horizontaler Rechteck-Grafikelemente. Die Ausgabe dieses Programms zeigt das nächste Bild 8_22. Das Zeichnen des Rahmens $(5,4 \text{ cm} \times 4,0 \text{ cm})$ ist im Programm nicht enthalten, vgl. hierzu z. B. das PostScript-Programm: Bild 8_3 auf Seite 209.

Die Prozedur /Mt transformiert Benutzer- in Gerätekoordinaten, die aus ganzen Zahlen bestehen müssen, um Sprünge in der Linienbreite und des Linienabstands zu vermeiden. Hierzu sind in PostScript, Level 1, Rundungen nötig, die zu längeren Rechenzeiten führen, verglichen mit PostScript, Level 2. Hier wird die richtige Gerätekoordinatenwahl in Gerätepixeln automatisch vorgenommen. Der entsprechende Algorithmus wird als Strokeadjust bezeichnet und soll hier nicht diskutiert werden. Das Basis-Quadrat der Höhe 1 und der Breite 1 wird durch den Wiederholungsfaktor r zu einem Rechteck der Höhe 1 und Breite r am Rechteck-Koordinaten-Ursprung (x_0, y_0) . Hier liegt die linke untere Ecke des Rechtecks. Das Rechteck wird durch die Prozedur /HQR definiert. Mit /HQRr wird eine x_0 -Translation um die x-Koordinate r hinzugefügt. Die Prozedur /0 zeichnet schließlich das Rechteck am Koordinatenpunkt (x_0, y_0) . Die Prozedur /t (= Translation) definiert den Startpunkt eines Rechtecks, und die Prozedur /@ führt eine reine Translation um r Einheiten in x-Richtung durch.

Das Programm in Bild 8_21 enthält am Ende zwei Zeilen zum Zeichnen mehrerer Rechtecke der Breite 1, 10, 2, 5 und 16 an verschiedenen Startpositionen $(x_0, y_0) = (1, 8), (1, 13), (13, 13), (1, 18), (2, 20), (2, 21)$ und (2, 22). Die letzten drei Positionen werden durch eine PostScript-for-Schleife festgelegt.

Ein Laserdrucker mit der Auflösung 300 dpi pro Zoll erlaubt bei 20×20 Einzelpunkten insgesamt eine Bildmatrix von 32×24 Rasterzellen im Rahmen. Entsprechend erlaubt ein 3600-dpi-Filmbelichter bei 24×24 Einzelpunkten 320×240 Rasterzellen im Rahmen 5,4 cm $\times 4,0$ cm. Dies ist der angestrebte Standardfall in diesem Buch auf der Basis der CEPT-Bildmatrizen mit 320×240 Rasterzellen (Bildpunkten) in Geometriegrafik.

Bild 8_22 zeigt horizontale Rechteck-Grafikelemente mit Startposition und Breite entsprechend dem PostScript-Programmcode, Bild 8_21.

Nach diesem Beispiel können jetzt *16stufige Rechteck-Grafikelemente* erzeugt werden.

PSL1-Programmcode: Horizontale Rechteck-Grafikelemente (16 Graustufen) %!PS-Adobe-3.0 B8260-7n.eps 20.10.94 %%BoundingBox: 72 90 226 206 % Definitionen /Mt /HQR /HQRr, vgl. PSL1-Code C8260-6n.eps /HQR1 {HQR /x0 1 x0 add def} bind def %Rechteck & x0-Transl. %horizontale (HO) Raster, horizontales moveto /HOIn {%Basis-Rechteck (w=r 1); Innenfeld weiss (w=r 0<h<1) %Wiederholungsfaktor r /r exch def x0 y0 r 1 HQR %Schwarzes Rechteck (w=r h=1) 1.0 setgray %Rechteck weiss (w=r 0<h<1)</pre> x0 y0 xyh add r h HQRr 0.0 setgray } bind def /HORa {%Basis-Quadrat (w=r 1); Innenfeld weiss (w=r 0<h<1) /r exch def %Wiederholungsfaktor r x0 y0 r 1 HQR %Schwarzes Rechteck (w=r h=1) 1.0 setgray x0 y0 xyh add r h HOR %Rechteck weiss (r 0<h<1)</pre> r {x0 xyw add y0 w 1 HQR1} repeat %Quer-Rechteck 0.0 setgray } bind def /HOMi {%Basis-Rechteck (w=r 1); Innenfeld weiss (0<w,h<1) /r exch def %Wiederholungsfaktor r x0 y0 r 1 HQR %Schwarzes Randrechteck 1.0 setgray r {x0 xyw add y0 xyh add w h HQR1} repeat %Quadrat 0.0 setgray } bind def /xyw{1 w sub 0.5 mul}bind def /xyh{1 h sub 0.5 mul}bind def /0 /r exch def x0 y0 r 1 HQRr} bind def %r-fach Quadrat $\frac{1}{h}$ 0.10 def /w 0.30 def \widetilde{HOMi} bind def /N/M {/h 0.10 def /w 0.60 def HOMi} bind def /h 0.10 def HOIn} bind def /L/K {/h 0.15 def HOIn} bind def {/h 0.20 def HOIn} bind def /J /h 0.25 def HOIn} / I bind def {/h 0.30 def HOIn} /Hbind def {/h 0.35 def HOIn} /G bind def /h 0.40 def HOIn} /Fbind def {/h 0.45 def HOIn} / E bind def /D{/h 0.50 def HOIn} bind def /C /h 0.60 def HOIn} bind def {/h 0.70 def HOIn} bind def /B {/h 0.80 def /w 0.50 def HORa} bind def /A {/x0 exch x0 add def} bind def %reine x0-Translation /@ /t {/y0 exch def /x0 exch def} bind def %Start x0, y0 1 1 scale 72 90 translate 0.0 setlinewidth %kleinste Linie 72 300 div 20 mul dup scale 0 0 t 32 H 1 1 6 {0 exch t 1 H 30 @ 1 H} for 07tÌH7@16A7@1H 08t1H7@16B7@1H % 0 20 t 1 H 7 @ 16 N 7 @ 1 H 0 21 t 1 H 7 @ 16 O 7 @ 1 H 0 22 t 1 H 30 @ 1 H 0 23 t 32 H showpage

Bild 8_23PostScript-Programm Rechteck-Grafikelemente

C8260_7

PostScript-Programmcode für die grafische Ausgabe von Bild 8_24 zur Erzeugung horizontaler Rechteck-Grafikelemente (16stufig) für die Druckfarbe Gelb *Y*

Bild 8_23 zeigt den PostScript-Programmcode zur Erzeugung horizontaler Rechteck-Grafikelemente (16stufig) für die Druckfarbe Gelb *Y*.

Bild 8_24 zeigt Rechteck-Grafikelemente (16stufig) entsprechend dem PostScript-Programmcode, Bild 8_23. Die Bildbeschreibung setzt sich zusammen aus 16 Operatoren @, A, B, C, ..., M, N, O für die 16 Graustufen von Weiß nach Schwarz sowie Wiederholungsfaktoren r (Ziffern 1, ..., 22). Durch PostScript -for-Schleifen kann die Dateilänge für die Bildinformation verkürzt werden.

Der Operator "16 o" zeichnet zum Beipiel ein schwarzes Rechteck (16faches Quadrat) in horizontaler Richtung. Die Ausführungszeit für das 16fache Quadrat scheint nahezu identisch wie für ein Quadrat (Erfahrung beim Bildaufbau mit Display-PostScript an VAX-Workstation und mit Laser Druckern der Auflösung 300 dpi). Wir können daher bis zum Faktor 16 (dem Wiederholungsfaktor r) an Ausführungszeit einsparen, wenn die Grafik-Elemente entsprechend ihrer Orientierung gezeichnet werden. Die horizontale Orientierung für die Druckfarbe Gelb Y sollte daher mit horizontal orientierten Rechtecken (r-fache Quadrate) gezeichnet werden. Entsprechendes gilt für die Druckfarbe Schwarz unter 45°, Magentarot unter 90° und Cyanblau unter 135°.

Das Programm in Bild 8_23 und die zugehörige Ausgabe in Bild 8_24 ist in dieser Hinsicht zeitoptimiert, weil sowohl die Grafikelement-Orientierung als auch die Zeichnungsdurchführung als auch die Translation horizontal erfolgen.

Die Höhe /h in den Operatoren A, B, ..., M, N wird hier in Einheiten von 0,10 für helle Farben und 0,05 für dunkle Farben gestuft. Der Operator /H für Mittelgrau besitzt den Wert h = 0,3 und damit die Flächenlücke 30 % im Gra-fikelement. Durch Rasterpunktverbreiterung im Druck wird die Flächendek-kung von 70 % auf das Soll 75 % bis 80 % vergrößert.

Auf ein entsprechendes Programm für rechtsdiagonale Grafik-Elemente wird hier verzichtet. Mit den im Abschnitt 8.8 "Rasterzellen-Schwellendaten" ab

Seite 236 zu besprechenden Matrizen von Rasterzellen-Schwellendaten, die erst in PostScript Level 2 benutzbar sind, wird eine elegante Methode zur Bildrasterung möglich. Hierbei sind grundsätzlich auch diagonale Winklungen möglich. Das Arbeiten mit diagonalen Grafikelementen und die Verwendung der diagonalen Schreibrichtung zur Zeitersparung wird nur für Belichter in Frage kommen, die nicht mit Rasterzellen-Schwellendaten arbeiten können oder in Sonderfällen.

8.7 Farbbilder und Farbseparation mit Linienrastern

Im folgenden werden anstelle von Schwarz-Weiß-Rastern entsprechende Raster in Farbe verwendet.

Bild 8_25 Farbstreifen von Grund- undMischfarben9481_8Farbstreifen mit vier Grundfarben CMYNund drei Mischfarben; Flächendeckungvollflächig und 70 %

Bild 8_25 zeigt Farbstreifen mit vier Grundfarben (CMYN = Cyanblau, Magentarot, Gelb und Schwarz) und drei Mischfarben (OLV = Orangerot, Violettblau und Laubgrün) vollflächig und mit 70 % Flächendeckung.

Zur Farbausgabe müssen die Raster unter vier verschiedenen Winklungen stehen. In allen folgenden Bildern verwenden wir für Gelb *Y* die Winklung 0° , für Schwarz *N* die Winklung 45° , für Magentarot *M* die Winklung 90° und für Cyanblau *C* die Winklung 135° .

Die Farbe in Bild 8_25 entsteht mit dem PostScript-Programmcode in Bild 8_27, und die Zeile 8 mit dem PostScript-Code /ausz 4 def ergibt das hier dargestellte Farbbild. Nimmt die Variable /ausz nacheinander die Werte 0, 1, 2 oder 3 an, so entstehen die vier Farbauszüge C = Cyanblau, M = Magentarot, Y = Gelb und N = Schwarz.

Bild 8_26 zeigt Farbauszüge der Farbstreifen mit vier Grundfarben *CMYN* und drei Mischfarben *OLV* mit vollflächiger und 70 % Flächendeckung. Das zugehörige Farbbild ist bereits in Bild 8_25 dargestellt.

Der PostScript-Programmcode in Bild 8_27 erlaubt die Erzeugung von vier Farbauszügen *CMYK* und des zugehörigen Farbbilds F, falls nacheinander in Zeile 8 die PostScript-Variable /ausz Werte zwischen 0 und 4 annimmt.

Die Rasterfrequenz 60 dpi für alle Farbauszüge erlaubt die direkte visuelle Erkennbarkeit der vier Winklungen 135° für *C*, 90° für *M*, 45° für *N* und 0° für *Y* in den Farbauszügen und im Farbbild. Für einen hochqualitativen Druck wird man anstelle der Rasterfrequenz 60 dpi die Rasterfrequenz 150, 180 oder 225 dpi wählen. PSL1-Programmcode: Farbbild und -auszüge mit vier Grundfarben CMYN %!PS-Adobe-3.0 d2:[rr.p9f]B7251-7n.eps/B9481-8N.eps 12.2.96 %%BoundingBox: 72 90 226 204 /Times-Roman findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse }forall /Encoding ISOLatinlEncoding def currentdict end /Times-ISOL1 exch definefont pop /FS {findfont exch scalefont setfont} bind def /MM {72 25.4 div mul} def /str {8 string } bind def %%EndProlog 72 90 translate 0.01 MM 0.01 MM scale /ausz 4 def %Farbauszug 0=C, 1=M, 2=Y, 3=N, 4=F /recfi {/heigth exch def /width exch def /ys exch def /xs exch def xs ys moveto width 0 rlineto 0 heigth rlineto width neg 0 rlineto closepath ausz 0 eq { pop pop pop 1 exch sub setgray %C 060 135 {pop} setscreen fill } if ausz 1 eq { pop pop 1 exch sub setgray pop ۶М 060 090 {pop} setscreen fill } if ausz 2 eq { pop 1 exch sub setgray pop pop %Υ 060 000 {pop} setscreen fill } if ausz 3 eq { 1 exch sub setgray pop pop %N 060 045 {pop} setscreen fill } if ausz 4 eq { setcmykcolor 060 135 {pop} 060 090 {pop} 060 000 {pop} %F 060 045 {pop} setcolorscreen fill} if} bind def ausz 3 ge {0.0 0.0 0.0 0.5 0 0 5400 4000 recfi} {0.0 setgray 0 0 moveto 5400 0 rlineto 0 4000 rlineto -5400 0 rlineto closepath stroke} ifelse ausz 3 ge {1.0 setgray 300 /Times-ISOL1 FS 100 3600 moveto (Grund>, Mischfarben, Flächendeckung) show } if /xyw {4000 12 div} bind def /xw {5 xyw mul} bind def /x01 {5 xyw mul} bind def /y0 {1.2 xyw mul} bind def /x02 {10 xyw mul} bind def /colors1 %CMYN der Farbstreifen von unten nach oben $\begin{bmatrix} \{1.0 \ 0.0 \ 0.0 \ 0.0 \} & \{0.0 \ 1.0 \ 0.0 \ 0.0 \} & \{0.0 \ 0.0 \ 1.0 \ 0.0 \} \\ \{0.0 \ 1.0 \ 1.0 \ 0.0 \} & \{1.0 \ 0.0 \ 1.0 \ 0.0 \} & \{1.0 \ 1.0 \ 0.0 \ 0.0 \} \end{bmatrix}$ $\{1.0 \ 1.0 \ 1.0 \ 0.0\}$ $\{0.0 \ 0.0 \ 0.0 \ 0.0\}$ $\{0.0 \ 0.0 \ 0.0 \ 1.0\}$ bind def /colors2 $[\{0.5 \ 0.0 \ 0.0 \ 0.0\} \ \{0.0 \ 0.5 \ 0.0 \ 0.0\} \ \{0.0 \ 0.5 \ 0.0\}$ `0.0 0.5 0.5 0.0} {0.5 0.0 0.5 0.0} {0.5 0.5 0.0 0.0} 0.5 0.5 0.5 0.0 $\{0.0 0.0 0.0 0.0$ $\{0.0 0.0 0.0 0.5\}$ bind def 0 1 8 {/i exch def colors1 i get exec x01 i xyw mul y0 add xw xyw recfi} for 0 1 8 {/i exch def colors2 i get exec x02 i xyw mul y0 add xw xyw recfi} for ausz 3 ge {1.0 setgray 300 /Times-Italic FS /N8 (C Υ O=M+Y L=C+Y V=C+M C+M+Y W) def М Ν 0 1 8 {/nr exch def nr xyw mul y0 add x01 1300 sub exch moveto 40 0 N8 nr 6 mul 6 getinterval ashow}for 300 /Times-Roman FS x01 400 add y0 300 sub moveto (100) show 30 0 rmoveto (%) show x02 600 add y0 300 sub moveto (70) show 30 0 rmoveto (%) show} if showpage

Bild 8_27 PostScript-Programm Erzeugung Farbstreifen C7251_7

PostScript-Programmcode für die grafische Ausgabe der Bilder 8_25 und 8_26

Bild 8_27 zeigt PostScript-Programmcode für Bild-Ausgaben 8_25 und 8_26.

8.8 Rasterzellen-Schwellendaten

Bild 8_28 zeigt 16stufige horizontale Graureihen (*links und rechts*). Das Bild rechts verwendet den PostScript-Programmcode von **Bild 8_29** mit 8-bit Rasterzellen-Schwellendaten von 24 × 24 Einzelpunkten. Die Rasterzelle beschreibt ein horizontales Linienraster mit Zentralfeldern im Mittelbereich. Die Ausgabe ist von der Auflösung des Ausgabegeräts abhängig. Bild 8_28 (*links*) entsteht mit Belichter-Voreinstellungen **ohne** Rasterzellen-Schwellendaten.

Vergleicht man die Kantenlänge bei einer Rasterzelle mit 24×24 Einzelpunkten am Belichter und Laserdrucker, so ergeben sich für deren Auflösungen 3600 dpi und 300 dpi die Kantenlängen 1/6 mm und 2 mm (= $12 \cdot 1/6$ mm). Auf einem Laserdrucker ergibt sich daher in etwa das Bild 8_24 auf Seite 232.

Bild 8_28 (*oben rechts*) benutzt das Raster 24×24 und Bild 8_24 das Raster 20×20 . Die Rasterzellen-Schwellendaten in Bild 8_28 (*oben rechts*) beschreiben horizontale Linienraster mit 24×24 Einzelpunkten und die Grafikelemente in Bild 8_24 horizontale Linienraster mit 20×20 Einzelpunkten auf einem Laserdrucker der Auflösung 300 dpi.

Für Farbbilder sind digitale entsprechende Rasterzellen-Schwellendaten unter vier Winklungen möglich. Die Rasterzellen-Schwellendaten in Bild 8_29 enthalten zugleich in *einer einzigen* Halbtonzelle 16 horizontal orientierte Rasterstufen der Bilder 8_13 und 8_14 auf Seiten 221 und 222. Entsprechende rechteckförmige Rasterzellen-Schwellendaten können für die 16 diagonal orientierten Rasterstufen der Bilder 8_15 und 8_16 auf Seiten 223 und 224 definiert werden. Die Teile von diagonalen Nachbarzellen müssen hierbei in die Ecken der Rechteckform integriert werden. Hierauf wird in diesem Buch verzichtet.

PSL2-Programmcode: Rasterzellen-Schwellendaten $(24 \times 24, 8 \text{ bit, horizontal})$ %!PS-Adobe-3.0 B7211-7n.eps mit h24n721.for, 20.10.94 %%BoundingBox: 72 90 226 204 /FS {findfont exch scalefont setfont} bind def /MM {72 25.4 div mul} def /str {8 string } bind def /languagelevel where {pop languagelevel} {1} ifelse 2 eq {[/HalftoneType 3 /Width 24 /Height 24 /Thresholds counttomark 2 idiv dup dict begin {def} repeat pop currentdict end sethalftone if %Def.Dictionary %%EndProlog 72 90 translate 0.01 MM 0.01 MM scale 15 setlinewidth 0 0 moveto 5400 0 rlineto 0 4000 rlineto -5400 0 rlineto closepath stroke /xyw {4000 24 div} bind def /xw {16 xyw mul} bind def /x0 {8 xyw mul} bind def /y0 {5 xyw mul} bind def 0 1 15 {dup 0.0666 mul 1 exch sub setgray xyw mul y0 add x0 exch moveto xw 0 rlineto 0 xyw rlineto xw neq 0 rlineto closepath fill} for 200 /Times-ISOL1 FS 0 setgray /D16str (0123456789ABCDEF) def 0 1 15 {/nr exch def nr xyw mul y0 add x0 250 sub exch moveto D16str nr 1 getinterval show} for xyw 3.5 xyw mul moveto (<</HalftoneType 3 /Width 24 /Height 24 /Thresholds) show xyw 2.0 xyw mul moveto (%Mitte 7 × 5 "10", 13 × 5 "20", 24 × 5 "30", usw.) show xyw 0.5 xyw mul moveto (>> sethalftone %<<, >> siehe PSL2-Handbuch, Seite 361) show showpage

Bild 8_29 PostScript-Programm Raster-SchwellendatenC7211_7PostScript-Programmcode: Rasterzellen-Schwellendaten für Raster 24 × 24 und 8-bit

Bild 8_29 zeigt PostScript-Programmcode für die Ausgabe von Bild 8_28.

8.9 PostScript und Display-PostScript in Betriebssystemen

PC-Betriebssysteme für Intel 486 Produkt-Name und Grafik-Software				Hersteller, Hardware, Betriebs- system und Adobe-PostScript				
Hersteller	NeXT	Microsoft	IBM	Her- steller	Hardware	Betriebs- System	Post- Script	
Produkt- Name	NeXT- step V.3.3	Windows NT V.3.1	OS/2 V.2.1	Digital	VAX,AXP	OSF/1	Level 2	
Umfang	300 MByte	100 MByte	40 MByte	IBM	RISC 6000	AIX	Level 2	
Speicher	16 MByte	12 MByte	8 MByte	Sun	SPARC	Solaris	Level 2	
Grafik-	Display-	Graphic	Presentat.	Adobe	SPARC	X-Window	Level 2	
Software	PostScript	G.I.(GDI)	M.(PM)	NeXT	Intel, Motorolo	Mach	Level 2	

Bild 8_30PC-Betriebssysteme und Display-PostScript 7110_1,7110_2 PC-Betriebssysteme für Intel 486, Produkt-Name und Grafik-Software mit und ohne Display-PostScript (*links*) sowie Hersteller, Hardware, Betriebssystem und Adobe-PostScript (*rechts*)

Bild 8_30 zeigt PC-Betriebssysteme für Intel 486, Produkt-Name und Grafik-Software mit und ohne Display-PostScript (*links*) sowie Hersteller, Hardware, Betriebssystem und Adobe-PostScript (*rechts*).

Das PC-Betriebssystem mit PostScript hat den größten Speicherbedarf. Jedes Fenster auf der Benutzeroberfläche wird durch Display-PostScript beschrieben und dargestellt. Jedes Fenster kann als Schnappschuß "fotografiert", als PSL2-Datei abgespeichert und auf einem PSL2-Farbdrucker ausgegeben werden. Mit der Display-PostScript-Betriebssystemoberfläche können in einem Editor-Fenster PSL2-Programmcode geschrieben und in einem Bildbetrachtungs-Fenster ("image view"-Fenster) das zugehörige Farbbild dargestellt werden.

Viele PS-Bilder dieses Buchs wurden mit zwei Fenstern (Editor und Bildbetrachtung) entworfen, entweder an einer VAX-Workstation (PSL1-Technik) oder an einem PC mit *NeXTstep* (PSL2-Technik).

Die Firma *Digital* bietet seit Jahren PSL1 auf *VAX*-Workstations an. Alle Dokumentationen sind als PSL1-*Bookreader* mit Grafiken und Inhaltsverzeichnissen am Farbmonitor darstellbar und auf jedem PS-Drucker im Netz ausgebbar. Mit *NeXTstep* kann in jedem Buch, das als PostScript-Datei vorliegt, geblättert werden. Hierbei werden auch PSL2-Grafiken auf den Seiten dargestellt, jede Seite kann vergrößert und auf einem Farbdrucker ausgegeben werden. *NeXTstep* ist zusätzlich zum Bild als Betriebssystem für Workstations von *SUN, HP* und *DEC-AXP* angekündigt oder bereits erhältlich.

CIEBasedABC – geräte(un)abhängig Farbheit und -wert in CIEBasedABC Farbheit Farbwert Farbraum CIELAB -> PostScript -> Geräte-ABC* ABC Bsp. Geräte-Koordinaten Koordinaten intern Koordinaten XYZ CIE 1931 XYZ Farbmonitor (lineares Farbmeßgerät PostScript Level 2 Lab* CIELAB 1976 L*a*b* CIELAB-Farbmeßgerät $A^* = L^*$ X linearer Farbraum OLV OLV $B^* = a^*$ Y linearer Scanner, Belichter RGB Z OLV* Btx-Farbraum OLV* RGB* nichtlinearer Raum RGB* Farbdrucker quadrat./logarithm.Scanner

8.10 Farbheit, Farbwert und Farbraum-Transformationen

Bild 8_31 Farbheiten, -werte CIEBasedABC-Farbraum 7110 3,7110 4 Farbheiten und Farbwerte im CIEBasedABC-Farbraum (links) mit geräteunabhängigen CIE-Farbkoordinaten für Farbmonitor und Farbdrucker

Bild 8_31 zeigt Farbheiten und Farbwerte im CIEBasedABC-Farbraum (links). Die geräteunabhängigen CIE-Farbkoordinaten Helligkeit L*, Rot-Grün-Buntheit a* und Gelb-Blau-Buntheit b* werden im PSL2-Programm verwendet und mit einer Farbraum-Transformation in die geräteunabhängigen Normfarbwerte XYZ umgewandelt. Die Koordinaten Lab* oder XYZ werden im PSL2-Interpreter zusammen mit der Soft- und Hardware zur Ansteuerung des Farbmonitors oder im Farbdrucker zur Erzeugung der Gerätefarben durch geeignete Mischung der Gerätegrundfarben benutzt (rechts).

Die Herstellung der Gerätefarben mit möglichst geringen Toleranzen im Vergleich zu den Sollfarben ist Aufgabe der Geräte-Entwickler. In der Regel ist dieser Prozeß zusammen mit der Firma Adobe im Geräte-PSL2-Interpreter bereits optimiert.

Die Anzahl der Gerätegrundfarben (3, 4 oder mehr) zur Erzeugung der Sollfarben und die Mischtechnik können von den Geräteherstellern frei gewählt werden. Teilweise kann der Anwender die Anzahl und Mischung der Gerätegrundfarben zur Erzeugung der Gerätefarben mitbestimmen. Bei Farbdruckern können oft drei (CMY) oder vier Grundfarben (CMYN) zum Aufbau des Bildes gewählt werden.

 R^*

 G^*

*B**

 C^*

 M^*

 Y^*

8.11 Optimierung der Farbwiedergabe für Einzelfarben

Bild 8_32 CIEBased*ABC***-Farbraum und Farbwiedergabe** 7111_5, 7120_5 CIEBased*ABC*-Farbraum und Farbwiedergabe durch Vergleich von *XYZ*_{soll} und *XYZ*_{ist} (*links*). Optimierung der Farbwiedergabe durch Addition von Farbmeßdifferenzen zu Sollfarben (*rechts*).

Bild 8_32 zeigt Normfarbwerte im CIEBased*ABC*-Farbraum und die Farbwiedergabe durch Vergleich von XYZ_{soll} und XYZ_{ist} (*links*). Die Optimierung der Farbwiedergabe durch *Addition* von Farbmeßdifferenzen $\Delta X = X_{soll} - X_{ist}$ und entsprechend für Y und Z führt zu *optimierten* Zielfarben mit den Normfarbwerten XYZ_{opt} (*rechts*).

Die Ausgabefarben werden von den im *PSL2*-Programm definierten Sollfarben mit den Normfarbwerten *XYZ*_{soll} bestimmt. In der Regel werden Farbheitskoordinaten *LMN** zur Ansteuerung der Gerätegrundfarben benutzt. Sie ergeben sich als Quadratwurzel (*PSL2*-Decode1-Funktion {0.5 exp}, *vgl. Bild links unten*) aus den Farbwerten *LMN*, die über eine lineare Matrix mit *XYZ* verknüpft sind.

Bei Farbmonitoren entsprechen die Farbheiten LMN^* dem Signal-Spannungs-Bereich von 0 V bis 1 V. Die Farbwerte LMN_{ist} bzw. Leuchtdichten auf dem Monitor nehmen quadratisch (*PSL2*-Decode2-Funktion {2.0 exp}, *vgl. Bild links unten*) als Funktion der Signalspannungen zu und entsprechend die linear verknüpften Normfarbwerte XYZ_{ist} .

In der Regel wird zwischen den Soll- und Ist-Normfarbwerten eine Farbmeßdifferenz vorliegen, die von der ISO-CIE-Güte des Ausgabe-Geräts (Farbmonitor, -drucker, -offset) abhängt. In vielen Fällen wird eine besonders gute Farbwiedergabe für eine begrenzte Anzahl von Farben verlangt, z. B. bei Fassaden-Entwürfen mit einer begrenzten Anzahl von fertig gemischten Pigmenten oder in der Werbung mit vermessenen Hausfarben. In diesem Fall addiert man im *PSL2*-Programm zu den Soll-Normfarbwerten ihre gemessenen Differenzen $\Delta X = X_{soll} - X_{ist}$ und entsprechend ΔY und ΔZ . Die Erfahrung zeigt, daß die Verbesserung durch diese Korrektur mehr als 50 % beträgt. Die Verbesserung wird um so größer, je linearer das System ist. Natürlich müssen die Farben reproduzierbar sein. Ist dies nicht der Fall, so muß die visuell ähnlichste Farbe des reproduzierbaren Farbraums gewählt werden.

8.12 Prinzip der PSL2-Farbraum-Transformationen

Digitale Bildverarbeitung mit *Adobe PostScript Level 2* CIEBased*ABC*-Farbraum

Die *ABC*-Farbdaten stellen eine Zonen-Theorie des Farbensehens mit zwei nichtlinearen Stufen dar:

nichtlineare trichromatische Stufe
 nichtlineare Gegenfarbenstufe

CIE 1931 XYZ-Farbraum in PSL2 [/CIEBasedABC<</td> %Dict PostScript Level 2 /MatrixABC [1 0 0 0 1 0 0 0 1] %default /DecodeABC [{} {} {} {}] %default, Leerfunkion /RangeABC [0 0.9505 0 1 0 1.0890] %D65 /MatrixLMN [1 0 0 0 1 0 0 0 1] %default /DecodeLMN [{} {} {}] %default, Leerfunkion /RangeLMN [0 0.9505 0 1 0 1.0890] %D65 /WhitePoint [0.9505 1 1.0890] %D65 /BlackPoint [0 0 0] % default >>]setcolorspace >>

Bild 8_33 Farbraum-Transformation *ABC*–XYZ* 7110_5, 7110_6, 7110_7 Zweistufige CIEBased*ABC*-Farbraum-Transformationen zwischen Farbheiten *ABC** und Normfarbwerten *XYZ (oben links und rechts)* sowie CIEBasedABC-Voreinstellungen für Normlichtart D65 *(unten links)*

Bild 8_33 zeigt die Prinzipien der digitalen Bildverarbeitung mit *Adobe* Post-Script Level 2 mit einer zweistufigen Farbraum-Transformation (*oben links*). Der CIEBased*ABC*-Farbraum ist geräteunabhängig, und zwei Matrizen und zwei Decodierfunktionen dienen für die Transformationen (*oben rechts*). Die Voreinstellungen im CIEBased*ABC*-Farbraum für den üblichen Farbraum CIE-XYZ 1931 enthalten noch Wertebereiche (*RangeABC* und *RangeLMN*) sowie Normfarbwerte für den Weiß- und Schwarzpunkt (*unten links*). Der Normfarbwert *Y* ist auf 1 normiert und *nicht* auf 100, wie in der Farbmetrik üblich. Die Modifikationen der Matrizen, Decodierfunktionen und Wertebereiche für ausgewählte Anwendungsfälle sind im *PSL2*-Handbuch aufgelistet.

8.13 Farbmonitor-Farbraum-Transformationen

EBU- <i>RGB</i> *-Farbraum in PSL2					
[/CIEBased <i>ABC</i> << %Dict PostScript Level 2					
/Matrix <i>ABC</i> [100010001] %default					
<pre>/DecodeABC [{ } { } }] % default, Leerfunkion</pre>					
/RangeABC [0 0.9505 0 1 0 1.0890] %D65					
/Matrix LMN [0.4303 0.2219 0.0202 0.3416					
0.6720 0.1412 0.1845 0.0833 0.9227]					
/Decode <i>LMN</i> [{2.2 exp} {2.2 exp}]					
/RangeLMN [0 0.9505 0 1 0 1.0890] %D65					
/WhitePoint [0.9505 1 1.0890] %D65					
/BlackPoint [0 0 0] % default					
>>]setcolorspace					

Bild 8_34Farbraum-Transformation *RGB*–XYZ* 7111_1,7111_2,7111_3 CIEBased*ABC*-Farbenraum-Transformationen für Farbmonitore nach dem EBU- und NTSC-Standard (*oben und un ten links*) sowie EBU-Definitionen im CIEBased*ABC*-Farbraum (*oben rechts*)

Bild 8_34 zeigt die CIEBased*ABC*-Farbenraum-Transformationen für Farbmonitore nach dem Standard der European Broadcasting Union (EBU-Standard) (*oben links*) sowie dem amerikanischen NTSC-Standard (*unten links*). Alle Definitionen für den EBU-*RGB**-Farbraum für die Normlichtart D65 sind angegeben (*oben rechts*).

Die Decodierfunkionen für den EBU- und NTSC-Farbraum unterscheiden sich im Exponenten (2,2 und 1,8). Der in Bild 6_29 auf Seite 190 für weißes Papier in der Drucktechnik verwendete Exponent 2,0 stellt auch hier ein sinnvolles Mittel dar. Die technisch für das Farbfernsehen ermittelten Exponenten unterscheiden sich vom Exponenten 3,0 für eine gleichabständige Stufung von Graureihen auf dunkler Umgebung. Wahrscheinlich wurden bei Ermittlung der Exponenten nicht nur gleichabständig gestufte Graureihen von separat liegenden Mustern in "schwarzer" Bildschirmumgebung (Exponent 3,0) betrachtet, sondern auch die Unterscheidbarkeit von aneinander grenzenden Farbmustern. Hier wird visuell etwa der halbe Exponent gefordert, d. h. 1,5.

Zusätzlich unterscheiden sich die Grundfarben des EBU- und NTSC-Standard-Farbmonitors, vgl. Matrix*LMN*-Daten in Bild 8_34.

8.14 CIELAB-Farbraum-Transformationen

CIELAB 1976 $L^*a^*b^*$ -Farbraum
Definition und UmkehrungCIELAB 1976 $L^*a^*b^*$ -Farbraum
und CIEBased*ABC*-Transformation $L^*= 116 (Y/Y_n)^{1/3} - 16$
 $a^*= 500 [(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$
 $b^*= 200 [(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}]$ $X = X_n [(L^* + 16) / 116 + a^*/500]^3$
 $Z = Z_n [(L^* + 16) / 116 - b^*/200]^3$ $X = X_n [(L^* + 16) / 116 + a^*/500]^3$
 $Y = Y_n [(L^* + 16) / 116]^3$
 $Z = Z_n [(L^* + 16) / 116]^3$
 $Z = Z_n [(L^* + 16) / 116 - b^*/200]^3$

Bild 8_35Farbraum-Transformation *L*a*b*–XYZ* 7111_7,7111_8 Transformationen zwischen den CIE-Farbräumen CIELAB 1976 und CIEXYZ 1931 und ihre Umkehrung mit CIELAB-Decodierfunktion

Bild 8_35 zeigt Transformationen zwischen den CIE-Farbräumen CIELAB und CIEXYZ und ihre Umkehrung (*oben links*) sowie CIELAB-Decodier-funktionen für die PSL2-Farbraum-Transformationen (*oben rechts*).

CIEBased*ABC*-Farbraum in PSL2 Transformation *ABC** -> *XYZ* CIELAB Teil 2: *LMN** -> *XYZ* $L = \text{Decode}L^* = \{3 \text{ exp}\}$ $M = \text{Decode}M^* = \{3 \text{ exp}\}$ $N = \text{Decode}N^* = \{3 \text{ exp}\}$ $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} X_n & L \\ Y_n & M \\ Z_n & N \end{pmatrix}$

Bild 8_36Farbraum-Transformation

*L*a*b*–XYZ* 7120_1,7120_3,7120_4 Zweistufige PSL2-Farbraum-Transformationen vom Farbraum CIELAB 1976 zum Farbraum CIEXYZ 1931 (*oben links und rechts*) sowie PSL2-Farbraum-Definitionen (*unten links*)

benraum CIELAB 1976 zum Farbenraum CIEXYZ 1931 (*oben links und rechts*). Die PSL2-Farbraum-Definitionen sind angegeben (*unten links*).

Für Lichtfarben am Monitor können die Hellbezugswerte Y bei Normierung auf 100 für Weiß für dunkle Farben zwischen 0 und 6/29 liegen. Dann ist für L^* noch eine Korrektur (*PLS2-Handbuch, Seite 190*) zu verwenden.

8.15 Optimierung der Farbwiedergabe mit CIE-Testfarben

OIED = 1ADC = O(1)	1
CIEBasedABC – Optimierung	aer
Forbuiddorgabo Lab* Lab	*
raidwiedergabe Lub soll - Lub	eopt
	· · I ·
PSL2-Programm Ausgabe Me	essung
$L^* = L \longrightarrow L^* \longrightarrow L$	L*
L_{soll} $L > L > L$	^L ist
$a_{aa11}^* \to M \to M^* \to M \to M^*$	a_{iot}^*
	180
$b_{\text{soll}}^* \qquad N \implies N \implies N > N^* \rightarrow N$	$b_{\rm ict}^*$
5011	150
$L_{ao11}^* = L_{ao11}^* + (L_{ao11}^* - L_{io1}^*)$	L^*_{acrt}
SOHK SOH SOH ISt	eopt
$ a_{\text{soll}}^* = a_{\text{soll}}^* + (a_{\text{soll}}^* - a_{\text{ist}}^*) - >$	a^*_{out}
SUIK SUI SUI ISU	Copt
$b_{aa11}^* = b_{aa11}^* + (b_{aa11}^* - b_{aa1}^*)$	b^*
SOHK SOH SOH SOH IST	eopt

Ausgleichsrechnung für Farbwiedergabe $Lab_{i, \text{ soll}}^* - Lab_{i, \text{ gopt}}^* = \text{Min.}$ Farbheit-Differenzen $\Delta(Lab_i^*)$ für CIE-Testfarben i = 1 bis 17 -> Min. $\begin{pmatrix} L_{i, \text{gopt}} \\ a_{i, \text{gopt}} \\ b_{i, \text{gopt}}^* \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \times \begin{pmatrix} L_{i, \text{ soll}} \\ a_{i, \text{ soll}}^* \\ b_{i, \text{ soll}}^* \end{pmatrix}$ $\sum [(\Delta L_i^*)^2 + (\Delta a_i^*)^2 + (\Delta b_i^*)^2]^{1/2} = \text{Min.}$ i = 1, 17

Ausgleichsrechnung für Farbwieder-
gabe
$$Lab_{i, \text{ soll}}^* - Lab_{i, \text{ gopt}}^* = \text{Min.}$$

Farbheit-Differenzen $\Delta(Lab^*)$ für
CIE-Testfarben $i = 1, 2, ..., 17$
 $\Delta L_i^* = L_{i, \text{ soll}}^* - L_{i, \text{ gopt}}^*$
 $\Delta a_i^* = a_{i, \text{ soll}}^* - a_{i, \text{ gopt}}^*$
 $\Delta b_i^* = b_{i, \text{ soll}}^* - b_{i, \text{ gopt}}^*$
 $\Sigma [(\Delta L_i^*)^2 + (\Delta a_i^*)^2 + (\Delta b_i^*)^2]^{1/2} = \text{Min.}$
 $i = 1, 17$

Bild 8_37 Globale Optimierung

Farbwiedergabe7120_7, 7121_2, 7121_4Prinzip der globalen Optimierung derFarbwiedergabe durch Ausgleichsrechnungmit gleichabständigem FarbenraumCIELAB 1976

Bild 8_37 zeigt das Prinzip der globalen Optimierung der Farbwiedergabe durch Ausgleichsrechnung (*drei Einzelbilder*). In Abschnitt 8.11 "Optimierung der Farbwiedergabe für Einzelfarben" auf Seite 240 wurde eine begrenzte Anzahl von Farben im Farbenraum CIEXYZ 1931 optimiert. Jetzt steht der visuell gleichabständige Farbenraum CIELAB 1976 im Vordergrund und ist auch zur Optimierung von Einzelfarben anwendbar (*oben links*). Die optimierten 51 Farbheits-Differenzen von 17 CIE-Testfarben (*oben rechts*) ergeben sich durch mathematische Ausgleichsrechnung mit neun Koeffizienten a_{ij} (i = 1, 2, 3; j = 1, 2, 3), welche die Farbwiedergabe auf dem Ausgabegerät global verbessern. Die optimierten Farbheiten Lab^*_{opt} zeigen in der Regel um etwa 50 % kleinere Helligkeitsdifferenzen $\Delta L^*_{s-o} = L^*_{soll} - L^*_{opt}$ gegenüber $\Delta L^*_{s-i} = L^*_{soll} - L^*_{ist}$ und entsprechend für die Buntheiten a^* und b^* . Bei Variation der Aufnahmelichtart oder Belichtung von fotografischem Filmmaterial entstehen zugleich größere Variationen der digitalen Bilder nach dem Abscannen. Zur Optimierung der Farbwiedergabe sollte möglichst zusätzlich ein Testbild mit 17 *CIE*-Testfarben als Referenzfarben auf dem gleichen Filmmaterial aufgenommen werden. Die digitale Abtastung sollte möglichst zusammen mit den übrigen Bildern des Films erfolgen.

Für die 17 *CIE*-Testfarben sind je 17 Farbheitstripel Lab_{soll}^* und Lab_{ist}^* bekannt. Zur Optimierung und Bestimmung von neun Koeffizienten aus 51 Gleichungen dient das bewährte Verfahren der Ausgleichsrechnung. Die neun Koeffizienten können als Funktion der Aufnahmelichtart, Belichtung und für verschiedene Filmmaterialien dargestellt und in einer Referenz-Datei abgespeichert werden.

Die entsprechende Referenz-Datei und ihre systematische Anwendung kann die erforderlichen manuellen Bildverbesserungen in *Adobe Photoshop* oder anderen Softwareprodukten erheblich reduzieren helfen. Auf individuelle Filme mit zugehörigen Referenzaufnahmen angewandt, ergibt sie die mathematisch und visuell *optimale* Lösung. Verbleibende Abweichungen sind bedingt durch die fehlerhaften Empfindlichkeiten der Scanner oder des Filmmaterials im Vergleich zur Augenempfindlichkeit (Normspektralwertfunktionen).

Andere handelsübliche Farbmanagement-Systeme mit festen Farbraum-Transformationen, zum Beispiel für die Reproduktionskette Filmmaterial – Foto-CD – Farbdrucker, können nur beschränkt die Variationen bei der Aufnahmelichtart oder Belichtung ausgleichen, und liefern deshalb in vielen Fällen ungenügende Ergebnisse.

Die Ausgleichsrechnung mit Testfarben ist das wirksamste und zugleich ein einfaches Mittel, das auch kleinen Betrieben größte Flexibilität läßt und die Schwachpunkte in den Farbreproduktionsketten offenlegt. Die Ergebnisse definieren die Güteklassen von Komponenten, z. B. von Filmmaterial, Farbscanner, Farbdrucker, Farbmonitor, Farboffset, und geben Hinweise auf sinnvolle Investitionen bzw. Verbesserungen.

Mit den Farbwiedergabe-Indizes ist bei Reklamationen von Kunden eine objektive Diskussion möglich.

Farbmeßgeräte sind zur Ermittlung der Güte nicht immer unbedingt erforderlich. Ein *visuelle* Farbabstandsschätzung ist in vielen Fällen mit einem Farbmuster-Atlas möglich, z. B. dem Atlas RAL-Design mit ca. 1700 Mustern, ausgefärbt nach CIELAB-Koordinaten. Wenn die Farbheiten *Lab*^{*}_{ist} mit einer "Pipette" ermittelt werden, z. B. mit dem Softwareprodukt "Photoshop" von *Adobe Systems*, ist ebenso eine *numerische* Farbabstandsschätzung möglich.

8.16 Definition und Reproduktion der 17 CIE-Testfarben

Bild 8_38 Erzeugung von17 CIE-Testfarben7221_7Erzeugung von 17 CIE-Testfarbennach DIN 6169 "Farbwiedergabe" mitCIEXYZ-Farbwerten

Bild 8_38 zeigt die 17 CIE-Testfarben nach DIN 6169 "Farbwiedergabe". Die CIE-Testfarben sind im PSL2-Programmcode, siehe Bild 8_39 auf Seite 247, durch die Normfarbwerte *XYZ* für die Normlichtart D65 definiert.

Ein PSL2-Programmcode, welcher anstelle der Normfarbwerte *XYZ* die CIELAB-Farbheiten L^* , a^* und b^* benutzt, wird in Bild 8_43 auf Seite 251 verwendet.

Einige Besonderheiten des PSL2-Programmcodes in Bild 8_39 sollen beschrieben werden

- Eine Variable /PSL12 (PostScript Level 1 oder 2) wird definiert (*Zeile 5 und 6*).
- Eine Variable /dictende (Dictionary-Ende und -Definition) wird definiert (*Zeile 8 und 9*).
- Der Farbraum /CIEBasedABC ist nur in PSL2 benutzbar und führt auf PSL1-Geräten zum Abbruch der Farbmonitordarstellung oder der Druckerausgabe.
- Der Programmcode kann über die zwei PS-Abfragen PSL12 2 eq { ... } if bzw. PSL12 1 eq { ... } if gleichzeitig auf PSL1- und PSL2-Geräten benutzt werden. Auf PSL1-Geräten werden die bunten Zielfarben als unbunte Graustufen wiedergegeben, auf PSL1-Farbgeräten wird *XYZ* als *OLV* interpretiert.
- Die PSL2-Operatoren << und >> für das PSL2-Dictionary /CIEBasedABC werden durch [und /dictende in PSL1 emuliert.
- Der Hellbezugswert *Y* ist auf den Bereich 0 bis 1 normiert und nicht wie in der Farbmetrik üblich auf den Bereich 0 bis 100.

```
PSL2-Programmcode: Definition und Reproduktion von 17 CIE-Testfarben
 %!PS-Adobe-3.0 B7221-7n.eps
%%BoundingBox: 72 90 226 206
                                               20.10.94
 /FS {findfont exch scalefont setfont} bind def
/MM {72 25.4 div mul} def
/languagelevel where {pop languagelevel} {1} ifelse
/PSL12 exch def
 /dictende {counttomark 2 idiv dup dict begin {def}
                  repeat pop currentdict end} bind def
 %%EndProlog
 72 90 translate 0.01 MM 0.01 MM scale 20 setlinewidth
 PSL12 2 eq {[ /CIEBasedABC [ %Farbraum und Grenzen fuer D65
  /WhitePoint [0.9505 1 1.089] %CIEXYZ fuer D65
/RangeABC [0 0.9505 0 1 0 1.0885] %CIEXYZ-Grenzen N/W
/RangeLMN [0 0.9505 0 1 0 1.0885] dictende ]
setcolorspace } if %Ende Standard-Definition PSL2-CIEBasedA
 PSL12 1 eq
                                                       %Definition alle PSL1-Geraete
  { {/setrgbcolor where
                                                       %Abfrage auf PSL1-Farb-Geraet
                                                                           %PSL1-Farb-Geraet
        {pop setrqbcolor}
   {pop 0.4 exp setgray pop} ifelse }
/setcolor exch def} if
                                                                          %PSL1-SW-Geraet
 /colRec {moveto s 0 rlineto 0 s rlineto s neg 0 rlineto %Quadrat
    closepath setcolor} bind def
 0.1885 0.1983 0.2157 setcolor %Testfarbe Nr 16 (Mittelgrau)
 0 0 moveto 5400 0 rlineto 0 4000 rlineto
                                                                    %Bildfeld 54mm x 40mm
                 -5400 0 rlineto closepath fill
 250 /Times-Bold FS
                                 0.7239 0.7615 0.8289 setcolor %Weiss
 3200 3300 moveto (17 CIE-Testfarben) show
 500 500 translate %Nullpunkt untere linke Testfarbe
 /s 600 def /xw 1000 def /yw 800 def %Quadratseite und Abstaende
                                   x,y-Position
      Х
                           Ζ
                                                               fuelle Farbrechteck
  0.3298 0.2976 0.2459 0 0 colRec fill %CIE-TF01
0.2749 0.2890 0.1501 xw 1 mul yw 0 mul colRec fill %CIE-TF02
  0.2393 0.3043 0.0996 xw 2 mul yw 0 mul colRec fill %CIE-TF03
  0.2045 0.2948 0.2127 xw 3 mul yw 0 mul colRec fill %CIE-TF04
0.2502 0.3087 0.4042 xw 4 mul yw 0 mul colRec fill %CIE-TF05
  0.2826 0.2983 0.5791 0
                                                 yw 1 mul colRec fill %CIE-TF06
  0.3333 0.2939 0.5322 xw 1 mul yw 1 mul colRec fill %CIE-TF07
0.3757 0.3131 0.4544 xw 2 mul yw 1 mul colRec fill %CIE-TF08
  0.2048 0.1120 0.0436 xw 3 mul yw 1 mul colRec fill %CIE-TF09
0.5487 0.5894 0.1208 xw 4 mul yw 1 mul colRec fill %CIE-TF10
  0.1212 0.2035 0.1533 0

yw 2 mul collect fill %CIE-TF10

0.0628 0.0647 0.2773 xw 1 mul yw 2 mul collect fill %CIE-TF12

0.5885 0.5709 0.4139 xw 2 mul yw 2 mul collect fill %CIE-TF13

0.0935 0.1171 0.0542 xw 2 mul yw 2 mul collect fill %CIE-TF13
  0.0935 0.1171 0.0543 xw 3 mul yw 2 mul colRec fill %CIE-TF14
  0.0342 0.0359 0.0394 0 yw 3 mul colRec fill %CIE-TF15 N
0.1885 0.1983 0.2157 xw 1 mul yw 3 mul colRec fill %CIE-TF16 Z
  0.7239 0.7615 0.8289 xw 2 mul yw 3 mul colRec fill %CIE-TF17 W
0.7239 0.7615 0.8289 xw 1 mul yw 3 mul colRec stroke %-TF17 W
1 1 17 {/nr1 exch def %Quadrate und Texte Nr
nr1 9 gt {/xp 300 def}{/xp 200 def} ifelse
nr1 14 gt {/nr nr1 1 add def} {/nr nr1 def} ifelse
nr 1 sub 5 idiv /i exch def
nr 1 sub 5 mod /j exch def
j xw mul xp sub i yw mul 20 add moveto
nr1 4 string cvs show } for
                                                 %Quadrate und Texte Nr. 1 bis 17
 showpage
```

Bild 8_39PostScript-Programm: 17 CIE-Testfarben

C7221_7

PostScript-Programmcode zur Erzeugung der 17 CIE-Testfarben in Bild 8_38 mit der CIEBased*ABC*-Farbraum-Transformation für die Normfarbwerte *XYZ*

Bild 8_39 zeigt PostScript-Programmcode für die Ausgabe von Bild 8_38.

8.17 Definition und Reproduktion von 20 L*-Helligkeiten

Bild 8_40 zeigt unbunte CIELAB-Farben mit vorgegebenen Helligkeiten $L^* = 5, 10, \ldots, 100$ berechnet mit der (monochromen) CIEBasedA-Farbraum-Transformation. Die Helligkeiten $L^* < 15$ sind in der Regel nicht herstellbar. Mit einem Filmbelichter der Auflösung 3600 dpi und der voreingestellten Rasterweite 133 lpi (Rasterzelle 27×27) erzeugte der PostScript-Programmcode von Bild 8_41 auf Seite 249 eine mittlere Helligkeits-Abweichung von $\Delta L^* = 2$ im Bereich $25 < L^* < 80$.

Einige Besonderheiten des PSL2-Programmcodes in Bild 8_41 sollen beschrieben werden:

- Die Variablen /PSL12 (PostScript Level 1 oder 2) und /dictende (Dictionary-Ende und -Definition) sind für die Benutzung dieses Programms auf PSL1-Geräten erforderlich.
- Der Helligkeitsbereich *L** reicht von 0 bis 100, vgl. /RangeA [0 100].
- Die Variable /setcolor von PSL2 wird in PSL1 ersetzt durch: /setcolor {0.01 mul 0.4 exp setgray} bind def.
 Anstelle der Helligkeiten L* = 5, 10, ..., 100 in PSL2 werden in PSL1 die Graustufen über 0.05, 0.10, ..., 1,00 setgray erzeugt
- Die Helligkeiten $L^* = 5, 10, \ldots, 100$ werden in einer PS-Schleife erzeugt.
- Der Hellbezugswert *Y* ist auf den Bereich 0 bis 1 normiert und nicht wie in der Farbmetrik üblich auf den Bereich 0 bis 100.

```
PSL2-Programmcode: Definition und Reproduktion von 20 L*-Helligkeiten
 %!PS-Adobe-3.0 B7231-7n.eps
                                  20.10.94
%%BoundingBox: 72 90 226 206
/FS {findfont exch scalefont setfont} bind def /MM {72 25.4 div mul} def
/dictende {counttomark 2 idiv dup dict begin {def}
repeat pop currentdict end} bind def
 %%EndProlog
72 90 translate 0.01 MM 0.01 MM scale 20 setlinewidth
PSL12 2 eq
                                    %Abfrage PostScript Level 1 oder 2
  {[ /CIEBasedA [
                                    %monochromer L*-Farbraum fuer D65
  /WhitePoint [1 1 1]
                                     %CIEXYZ fuer Weiss
                                     %CIELAB-L*-Grenzen N/W
  /RangeA [0 100]
  /DecodeA
                                     %CIE-Transformation L* -> Y
    16 add 116 div 3 exp} bind
  dictende ] setcolorspace } if %Standard-PSL2 L* setcolor
PSL12 1 eq
                                        %Definition PSL1-SW-Geraet
  {/setcolor {0.01 mul 0.4 exp setgray} def } if
 /colqua {moveto s 0 rlineto 0 s rlineto s neg 0 rlineto %Quadrat
   closepath} bind def
 /s 600 def /xw 1000 def /yw 800 def %Quadratseite und Abstaende
                  %Graufeld mit L*=50 (mittlere CIELAB-Helligkeit)
 50 setcolor
0 0 moveto 5400 0 rlineto 0 4000 rlineto %Bildfeld 54mm x 40mm
            -5400 0 rlineto closepath fill
/TR {250 /Times-Roman-I FS} bind def %Times-Roma
/TI {250 /Times-Italic FS} bind def %Times-Italic
                                              %Times-Roman-I; Hoehe 2,5mm
1200 3700 moveto 100 setcolor
TR (20 CIELAB ) show TI (L*-) show TR (Helligkeiten) show
550 400 translate
                         %Nullpunkt unteres linkes Graufeld

      /i exch def
      %Zeilenindex i=0, 1, 2, 3

      /j exch def
      %Spaltenindex j=0, 1, 2, ..., 5

      /n i 5 mul j add def
      %laufende Nummer 0, 1, ..., 19

      /L* n 1 add 5 mul def
      %20 L*-Helligkeiten L*=5, ..., 100

0 1 3 {/i exch def
0 1 4 {/j exch def
         /x0 j xw mul def
/y0 i yw mul def
                                     %x-Position fuer Quadrat
                                    %y-Position
                                    %CIELAB-L*-Helligkeit
        L* setcolor
         x0 y0 colqua fill
                                    %xy0-Quadrat fuellen
         L* 50 eq {100 setcolor %Sonderfall Quadratrand
         x0 y0 colqua stroke} if %xy0-Quadrat
        L* 4 string cvs dup stringwidth %x-, y-Stringlaenge L*
        pop x0 exch sub 20 sub
                                               %x-Position minus xl
                                               %y-Text-Position
         y0 100 add moveto
         100 setcolor show
                                              %Text L* rechtsbuendig W
         for %Ende Schleife j
         for
                       %Ende Schleife i
showpage
```

Bild 8_41PostScript-Programm: L*-Helligkeiten

C7231_7

PostScript-Programmcode zur Erzeugung von L^* -Helligkeiten in Bild 8_40 mit der CIEBasedAFarbraum-Transformation für definierte Helligkeiten L^*

Bild 8_41 zeigt PostScript-Programmcode für die Ausgabe von Bild 8_40.

Bild 8_42 zeigt die Erzeugung von CIELAB-Farben mit der CIEBasedABC-Farbraum-Transformation für die Farbheiten *Lab**. Für die Helligkeit gilt $L^* = 20, 40, 60$ und 80 sowie für die Rot-Grün-Buntheit $a^* = 0, 20, 40, 60$ und 80. Die Gelb-Blau-Buntheit b^* ist für alle Farben gleich Null.

Einige Besonderheiten des PSL2-Programmcodes in Bild 8_43 auf Seite 251 sollen hier beschrieben werden:

- Die Variablen /PSL12 (PostScript Level 1 oder 2) und /dictende (Dictionary-Ende und -Definition) sind für die Benutzung dieses Programms auf PSL1-Geräten erforderlich.
- Der Helligkeits-Buntheitsbereich L* = 20, 40, 60 und 80 bzw. a* = 0, 20, 40, 60 und 80 wird in einer Schleife definiert.
- Als Farbraum CIEBasedABC wird der Farbraum CIEXYZ 1931 für die Normlichtart D65 benutzt.
- Die Transformationen von CIELAB nach CIEXYZ erfolgen mit üblichen PSL1-Definitionen, z. B. /LABDEF, /L*, /a*, /b*, /DecodeXYZ*, /X*, /Y*, /Z*, /X, /Y und /Z. Anmerkungen: Alle Farbraum-Transformationen nach CIEXYZ, z. B. LABH-NU1 1979 in Bild 4_12 auf Seite 91, können entsprechend erfolgen.

CIELAB-Farben können in der Regel nur innerhalb des Dreiecks $(L^*, C^*) = (0, 0), (L^*, C^*) = (50, 100) \text{ und } (L^*, C^*) = (100, 0) \text{ reproduziert}$ werden. Einige Randfarben liegen außerhalb, z. B. $(L^*, C^*) = (80, 80)$. Es sollte dann die ähnlichste Farbe erzeugt werden. Diese Zielfarbe ist in der Regel geräteabhängig.

```
PSL2-Programmcode: Definition und Reproduktion von 20 CIE-L*a*-Farben
```

```
%!PS-Adobe-3.0 B7241-7n.eps 20.10.94
%%BoundingBox: 72 90 226 206
/FS {findfont exch scalefont setfont} bind def
/MM {72 25.4 div mul} def
/languagelevel where {pop languagelevel} {1} ifelse
/PSL12 exch def
/dictende {counttomark 2 idiv dup dict begin {def}
repeat pop currentdict end} bind def
%%EndProlog
72 90 translate 0.01 MM 0.01 MM scale

      PSL12 2 eq {[ /CIEBasedABC [ %Farbraum und Grenzen fuer D65

      /WhitePoint [0.9505 1 1.089] %CIEXYZ fuer D65

      /RangeABC [0 0.9505 0 1 0 1.0885] %CIEXYZ-Grenzen N/W

      /RangeLMN [0 0.9505 0 1 0 1.0885] dictende ] setcolorspace} if

PSL12 1 eq
                                                %Definition alle PSL1-Geraete
                                                %Abfrage auf PSL1-Farb-Geraet
 { {/setrgbcolor where
      {pop setrgbcolor}
                                                                 %PSL1-Farb-Geraet
 {pop 0.4 exp setgray pop} ifelse }
/setcolor exch def} if
                                                                 %PSL1-SW-Geraet
/LABXYZ {LABDEF X Y Z} bind def
/s 600 def /xw 1000 def /yw 900 def %Quadratseite und Abstaende
/colqua {moveto s 0 rlineto 0 s rlineto
                                                                 %Quadrat
                s neg 0 rlineto closepath fill} bind def
50 0 0 LABXYZ setcolor %Graufeld mit L*=50 (mittlere CIELAB-Helligkeit)
0 0 moveto 5400 0 rlineto 0 4000 rlineto %Bildfeld 54mm x 40mm
              -5400 0 rlineto closepath fill
/TR {250 /Times-Roman FS} bind def %Times-Roman;
/TI {250 /Times-Italic FS} bind def %Times-Italic
                                                   %Times-Roman; Hoehe 2,5mm
1200 3720 moveto 100 0 0 LABXYZ setcolor
TR (20 CIE) show TI (-L*a*b*-) show TR (Farben) show
100 3720 moveto TI (L*) show
5100 100 moveto TI (a*) show TR
400 300 translate
                         %Nullpunkt unteres linkes Farbfeld
0 1 3 {/i exch def
0 1 4 {/j exch def
                                    %fuer CIELAB-L*= 20, 40, 60, 80
%fuer CIELAB-a*=0, 20, 40, 60, 80
          /LS i 1 add 20 mul def
         /aS j 20 mul def
LS aS 0 LABXYZ setcolor %L*, a*, b*=0 -> XYZ
          j xw mul i yw mul colqua
          100 0 0 LABXYZ setcolor %Schrift W
         LS 4 string cvs dup stringwidth pop /xl exch def
          j xw mul xl sub 050 sub i yw mul 200 add moveto show
         aS 4 string cvs dup stringwidth pop /xl exch def
j xw mul xl sub 400 add i yw mul 220 sub moveto show
           for %j
          for %i
showpage
```

Bild 8_43PostScript-Programm: Bunte CIELAB-Farben

C7241_7

PostScript-Programmcode zur Erzeugung von CIELAB-Farben in Bild 8_42 mit der CIEBasedABC-Farbraum-Transformation für die Farbheiten *Lab**

Bild 8_43 zeigt PostScript-Programmcode für die Ausgabe von Bild 8_42.

8.19 CIE-Testfarben-Bilddatei auf Kodak-Foto-CD

Alle CIE-Standards, auch die mit Definition der CIE-Testfarben, gelten entsprechend Vertrag zwischen den Organisationen CIE (Internationale Beleuchtungskommission) und ISO (Internationale Standard-Organisation) zugleich als internationale ISO-Normen. Die CIE-Testfarben werden daher weltweit für die Farbwiedergabe-Kennzeichnung verwendet. Zur Berechnung des Farbabstands zwischen Original und Wiedergabe wird ein CIE-Farbenraum benutzt. In den deutschen Normen DIN 6169 "Farbwiedergabe" ist hierzu noch der Farbenraum CIEUVW 1964 definiert, in Deutschland und international wird jedoch zunehmend der Farbenraum CIELAB 1976 benutzt.

Die 17 CIE-Testfarben werden z. B. von der BAM als Aufsichtfarben hergestellt, sowohl matt oder glänzend, und sind auch transparent als Folie lieferbar. Die Farbmuster sind normalerweise quadratisch und haben eine Kantenlänge von 3 cm. Diese Testfarben werden für die Farbwiedergabe-Kennzeichnung zu Testfarben-Tafeln, z. B. im Format DIN A4, zusammengestellt und mit einem technischen Prozeß reproduziert.

Wir behandeln im folgenden die fotografische Aufnahme der 17 CIE-Testfarben auf Farbnegativ-Filmmaterial und deren Reproduktion über die *Kodak*-Foto-CD. Zur Übertragung auf die *Kodak*-Foto-CD wird das Negativbild mit einem Kodak-Foto-CD-Scanner abgescannt und in fünf Auflösungen als 8-bit *OLV**-Bilddatei digital auf CD-ROM abgespeichert. Mit der Software *"Kodak Photo CD Access Developer Toolkit"* sind die digitalen Bilddaten auf der CD-ROM als PostScript-Datei les- und editierbar. Am PC läßt sich die digitale Bilddatendatei als CIE-Testfarben-Bild darstellen.

Die digitale PostScript-Datei ist mit jedem Editor am PC veränderbar und nach farbmetrischen Prinzipien so optimierbar, daß die Normfarbwerte der Original-Aufsichtfarben und der Wiedergabe-Lichtfarben am Farbmonitor möglichst übereinstimmen. Es besteht der Wunsch, die Wiedergabegüte zusätzlich durch einen Farbwiedergabe-Index zu kennzeichnen. Dieser erhält den Wert 100 bei Identität von Original und Wiedergabe. Mit zunehmendem Farbabstand wird er kleiner. Es gilt für den mittleren Farbwiedergabe-Index:

$$R_{\rm m} = 100 - 4,6 \Delta E_{\rm CIELAB}$$

Bei einem mittleren Farbabstand von zehn CIELAB-Einheiten ergibt sich der Wert 54. Moderne PSL2-Farbdrucker erreichen den Wert 70. Bevor die farbmetrische Optimierung beschrieben wird, ist als Beispiel zunächst eine *Kodak*-Foto-CD-PSL2-Datei in der kleinsten CD-Auflösung mit 192×128 Punkten tabelliert.
```
PSL2-Programmcode: Kodak-Foto-CD EPS-Datei mit 17 CIE-Testfarben
%!PS-Adobe-3.0 B7380-7n.eps wrstl:W0419m1.eps
%%Creator: Kodak Photo CD Access Developer Toolkit
%%Pages: 1
%%BoundingBox: 0 0 192 128
%%LanguageLevel:
                2
%%EndComments
%%EndProlog
%%Page: 1 1
/picstr 192 string def
gsave
/cols 192 def
/rows 128 def
72 65536 mul 4915200 div dup
cols mul exch rows mul scale
cols rows 8
[cols 0 0 rows neg 0 rows]
  currentfile picstr readhexstring pop }
false 3
%insgesamt 192 x 128 x 2 Hexadezimal-Zeichen (8 Bit) OLV*>Daten
000400000400000400000400000300000300000300000300
000400003000030000010000000000000
grestore
showpage
```

Bild 8_44Digitale Foto-CD-Datei im EPS-Format

C7380_7

Digitale PostScript-Datei, komprimiert gespeichert auf der Foto-CD und ausgelesen mit dem Software-Produkt "*Kodak Photo-CD Access Developer Toolkit*" als EPS-PostScript-Datei in der Auflösung von 192×128 Punkten

Bild 8_44 zeigt die digitale PostScript-Datei, komprimiert gespeichert auf der Foto-CD, und ausgelesen mit dem Software-Produkt "*Kodak Photo-CD Access Developer Toolkit*" als EPS-PostScript-Datei in der Auflösung von 192 × 128 Punkten.

Zur mathematischen Optimierung werden farbmetrische Prinzipien und die geringste Bildauflösung benutzt. Natürlich ist auch eine visuelle Optimierung durch Veränderung von Kontrastumfang und Helligkeit möglich, zum Beispiel mit dem Software-Produkt "*Adobe-Photoshop*". Diese visuelle Optimierung ist jedoch benutzerabhängig, zeitaufwendig und stets vom mathematisch zu berechnenden optimalen Ziel noch mehr oder weniger weit entfernt.

Die mathematische Ausgleichsrechnung ergibt eine PSL2-CIEBased*ABC*-Farbraum-Transformation zwischen dem Farbenraum *OLV** über *OLV* zum Normvalenzfarbraum *XYZ*. Mit dem Betriebssystem *NeXTstep* kann die so mathematisch optimierte Bilddatei innerhalb vorgegebener Toleranzen am PC dargestellt werden.

Abweichungen sind zu erwarten durch Einflüsse von: Filmmaterial, Aufnahmelichtart, Filmbelichtung, Filmentwicklung, Eigenschaften des *Kodak*-Foto-CD-Scanners, Justierung des Scanners, Daten-Komprimierung und Datenrückgewinnung, PC-Betriebssystem und Farbmonitor-Justierung. Diese Eigenschaften werden bei der Optimierung berücksichtigt und führen zu minimierten Abweichungen zwischen den Normfarbwerten XYZ_{soll} der Original-Aufsichtfarben und den Normfarbwerten XYZ_{ist} der Wiedergabe-Lichtfarben am Farbmonitor.

Bild 8_45PSL2-EBU-Farbraum-Definition7111_1,7370_6Standardisierte Farbraum-Transformationen zwischen Farbheiten im EBU-Standard und
den Normfarbwerten XYZ

Bild 8_45 zeigt die Farbraum-Transformationen zwischen den Farbheiten *LMN** bzw. *OLV** über Farbwerte *LMN* bzw. *OLV* und den Normfarbwerten *XYZ* für den standardisierten Farbfernsehprozeß mit EBU-Bildschirm-Phosphoren.

Die drei Decoder-Funktionen und die 3×3 -Matrix müssen für die *OLV**-Foto-CD-Daten so optimiert werden, daß der Farbwiedergabe-Index möglichst groß wird. Bei angenäherter Übereinstimmung zwischen Original und Wiedergabe erreicht der Farbwiedergabe-Index nahezu 100 und wird mit zunehmender Abweichung entsprechend kleiner. Der Optimierungs-Prozeß kann als individuelles Farbmanagement bezeichnet werden.

```
PSL2-Programmcode: Farbraum-Transformation Foto-CD-Bild mit 17 CIE-Testfarben %!PS-Adobe-3.0 B7381-7n.eps wrstl:W0419m2.eps
```

```
%%Creator: Kodak Photo CD Access Developer Toolkit
%%BoundingBox: 0 0 192 128
%%LanguageLevel: 2
%%EndComments
%%EndProlog
/picstr 192 string def
gsave
/cols 192 def
/rows 128 def
72 65536 mul 4915200 div dup
cols mul exch rows mul scale
[ /CIEBasedABC << %Farbraum und Grenzen fuer D65
 /CIEBasedABC << %Farbraum und Grenzen fuer D65

%vgl. Adobe Techn. Note #5122: Matching RGBcolor, S.4

/WhitePoint [1.0000 1 1.0000] %CIEXYZ fuer E

/DecodeABC [{1.1591 mul 1.634 exp}

{1.1486 mul 1.616 exp}

{1.2085 mul 1.502 exp}]

/MatrixABC [ 0.3546 0.1495 -0.0403

0.4319 0.7237 0.0972

0.0399 -0.0405 0.7171]

/PangeABC [0 1 0 1 0 1]
 /RangeABC [0 1 0 1 0 1]
/DecodeLMN [{} {} ]
/MatrixLMN [1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
                  0.0000 0.0000 1.0000]
 /RangeLMN [0 1 0 1 0 1] >>] setcolorspace
< <
 /ImageType 1
/Width 192 /Height 128
 /BitsPerComponent 8
/Decode [0 1 0 1 0 1]
/ImageMatrix [192 0 0 -128 0 128]
 /DataSource currentfile /ASCIIHexDecode filter
>>
image
%insgesamt 192 x 128 x 2 Hexadezimal-Zeichen (8 Bit) OLV*-Daten
000400003000030000010000000000000
grestore
showpage
```

Bild 8_46Foto-CD-Datei mit Farbraum-Transformation C7381_7 Foto-CD-EPS-Bilddatei mit Farbraum-Vorspann (Header), ermittelt durch Ausgleichsrechnung nach farbmetrischen Prinzipien

Bild 8_46 zeigt die so mit einem Farbraum-Vorspann geänderte Bilddatei. Man erkennt, daß die Original-Bilddaten auf der Foto-CD von Bild 8_44 auf Seite 253 hierzu *nicht* verändert werden, nur im Farbraum-Vorspann (Header) wird eine entsprechend optimierte PSL2-Farbraum-Transformation angegeben. Bei der hier skizierten digitalen Verarbeitung der Bilder in PSL2 ergeben sich eine ganze Reihe von Vorteilen:

- Farbraum-Vorspann wird berechnet aus Bilddatei von geringster Auflösung (192 × 128 Punkte),
- erzeugter Farbraum-Vorspann ist für alle weiteren Aufnahmen des gleichen Filmmaterials bei gleichen Aufnahmebedingungen verwendbar,

- geringer Speicherbedarf für optimierten Farbraum-Vorspann (Header),
- gleicher Farbraum-Vorspann für alle fünf Auflösungen verwendbar,
- digitale Original-Bilddaten auf Foto-CD müssen nicht neu abgespeichert werden,
- Original-Bilddaten und Farbraum-Vorspann, evtl. unterschiedlich für diverse Ausgabe-Geräte, werden erst zur Bild-Darstellung bzw. -Ausgabe vereinigt,
- keine Quantisierungsfehler durch Verkettung von Farbraum-Transformationen.

Im folgenden wird die Ermittlung des Farbraum-Vorspanns für das Ziel "Optimierung der *Kodak*-Foto-CD-Bildwiedergabe" behandelt.

8.20 Optimierung der Kodak-Foto-CD-Bildwiedergabe

Die Bilddaten sind auf der *Kodak*-Foto-CD als *OLV**-Farbheiten abgespeichert. Die Terminologie *OLV**-Farbheiten anstelle der meist verwendeten Bezeichnung *RGB*-Bilddaten besagt folgendes:

- Originalbilddaten sind in Form von Farbheiten (*-Koordinaten) auf der *Kodak*-Foto-CD abgespeichert,
- Originalbilddaten sind in meßtechnische (lineare) *OLV*-Farbwerte zu transformieren; hierzu dient gewöhnlich der Exponent 2 (Gamma-Wert), im Beispiel ergibt sich der Exponent 1,6,
- zwischen den Farbräumen *OLV* und *XYZ* besteht eine lineare Beziehung, die mit einer 3 × 3-Matrix beschrieben werden kann,
- der Wertebereich der OLV*-Farbheiten liegt zwischen 0 und 255. Mit dem maximalen Exponenten 2 (Gamma-Wert) ist ein Wertebereich von 0 bis 65 000 (255²) zu erwarten.

Der Farbmonitor sollte aus visuellen Gründen einen Leuchtdichteumfang von 0,5 zu 100 (1:200) bei Normierung auf den Hellbezugswert 100 für Weiß erzeugen und sollte eine visuell geeignete entsprechende Quantisierung (möglichst 65 000 Zwischenstufen) erlauben.

Foto-0	CD mi	it CIE-	Testfa	urben: $u = u$	Innormie	rte Daten
Nr.	O_u^*	L_u^*	V_u^*	$X_{\text{soll},u}$	$Y_{\text{soll},u}$	$Z_{\text{soll},u}$
1	141	109	95	0,3298	0,2976	0,2459
2	128	119	65	0,2749	0,2890	0,1501
3	102	129	45	0,2393	0,3043	0,0996
4	83	130	79	0,2045	0,2948	0,2127
5	82	132	130	0,2502	0,3087	0,4042
6	95	122	158	0,2826	0,2983	0,5791
7	136	115	160	0,3333	0,2939	0,5322
8	187	117	148	0,3757	0,3131	0,4544
9 R	173	40	43	0,2048	0,1120	0,0436
10 J	190	168	43	0,5487	0,5894	0,1208
11 G	55	106	64	0,1212	0,2035	0,1533
12 B	9	50	99	0,0628	0,0647	0,2773
13	204	166	124	0,5885	0,5709	0,4139
14	61	78	37	0,0935	0,1171	0,0543
15 N	39	42	39	0,0342	0,0359	0.0394
16 Z	89	95	88	0,1885	0,1983	0,2157
17 W	220	222	211	0,7239	0,7615	0,8289

Foto-C	CD mi	t CIE-	Testfa	rben: $n = n$	ormierte	Daten
Nr.	O_n^*	L_n^*	V_n^*	$X_{\text{soll},n}$	$Y_{\text{soll},n}$	$Z_{\text{soll},m}$
1	163	125	114	0,4556	0,3908	0,2967
2	148	136	78	0,3797	0,3795	0,1811
3	118	148	54	0,3306	0,3996	0,1202
4	96	149	95	0,2825	0.3871	0,2566
5	95	151	157	0,3456	0,4054	0,4876
6	110	140	190	0,3904	0,3917	0,6986
7	157	132	193	0.4604	0.3859	0.6421
8	216	134	178	0.5190	0.4112	0.5482
9 R	200	45	51	0,2829	0,1471	0,0526
10 J	220	192	51	0,7580	0,7740	0,1457
11 G	63	121	77	0.1674	0.2672	0.1849
12 B	10	57	119	0.0868	0.0850	0.3345
13	236	190	149	0,8130	0,7497	0,4993
14	70	89	44	0,1292	0,1538	0,0655
15 N	45	48	47	0.0472	0.0471	0.0475
16 Z	103	109	106	0,2604	0,2604	0,2602
17 W	255	255	255	1,0000	1,0000	1,0000

Bild 8_47 Bilddaten OLV* und Soll XYZ

7370_1, 7370_2

 OLV^* -Farbheiten für die 17 CIE-Testfarben (u = unnormiert), abgespeichert auf einer *Kodak*-Foto-CD sowie die Soll-Normfarbwerte XYZ_{soll}

Bild 8_47 zeigt *links* unnormierte (Index *u*) und *rechts* normierte (Index *n*) *OLV**-Farbheiten für die 17 CIE-Testfarben, abgespeichert auf einer Kodak-Foto-CD sowie die Soll-Normfarbwerte XYZ_{soll} der aufgenommenen Original-CIE-Testfarben. Unnormierte Daten sollten den möglichen Wertebereich von 0 bis 255 bzw. 0 bis 1 nicht voll ausnutzen, was hier erfüllt ist.

Die unnormierten OLV^* -Farbheiten liegen zwischen 42 und 222 für Schwarz und Weiß (CIE-Testfarben Nr. 15 und 17). Diese Daten können z. B. durch Studium der PSL2-Bilddatei in der kleinsten Auflösung (192 × 128 Punkte) oder einem Software-Programm ausgelesen werden, z. B. Adobe-Photoshop mit der "Lupe" an der entsprechenden Testfarben-Bildstelle unter Benutzung der "*RGB*-Anzeige". Die Daten können auch mit einem *Fortran*-Programm aus der PSL2-Bilddatei ausgelesen werden. Die Ermittlung der *OLV**-Farbheiten läßt sich automatisieren, wenn eine entsprechende Referenzbilddatei auf jeden Filmstreifen aufgenommen wird.

Die Bilddaten werden anschließend im Hellbezugswert auf die CIE-Testfarbe Nr. 17 (Weiß) normiert. Der Wertebereich des Hellbezugswerts *Y* liegt in PostScript zwischen 0 und 1 anstelle von 0 und 100 in der Farbmetrik. Bild 8_47 zeigt *rechts* die Normierung der CIE-Testfarbe Weiß für alle Daten (*OLV**, *OLV* und *XYZ*) auf die Werte 255 bzw. 1.

CIEBasedABC – Optimierung der
Farbwiedergabe $XYZ_{soll} - XYZ_{opt}$
PSL2-Programm Monitor Messung
X_{soll} $L \rightarrow L^* \rightarrow L X_{\text{ist}}$
$Y_{\text{soll}} \rightarrow M \rightarrow M^* \rightarrow M \rightarrow Y_{\text{ist}}$
Z_{soll} $N \rightarrow N^* \rightarrow N Z_{\text{ist}}$
$X_{\text{sollk}} = X_{\text{soll}} + (X_{\text{soll}} - X_{\text{ist}}) \qquad X_{\text{opt}}$
$Y_{\text{sollk}} = Y_{\text{soll}} + (Y_{\text{soll}} - Y_{\text{ist}}) \rightarrow Y_{\text{opt}}$
$Z_{\text{sollk}} = Z_{\text{soll}} + (Z_{\text{soll}} - Z_{\text{ist}}) \qquad Z_{\text{opt}}$

Foto-CD mit CIE-Testfarben: <i>n</i> = normierte Daten								
Nr.	O_n^*	L_n^*	V_n^*	$X_{\text{sollk},n}$	$Y_{\text{sollk},n}$	$Z_{\text{sollk},n}$		
1	163	125	114	0,4987	0,4206	0,3828		
2	148	136	78	0,4328	0,4213	0,2365		
3	118	148	54	0,3861	0,4646	0,1508		
4	96	149	95	0,3313	0,4458	0,3407		
5	95	151	157	0,3954	0,4658	0,5878		
6	110	140	190	0,4211	0,4293	0,7676		
7	157	132	193	0,4874	0,4060	0,6868		
8	216	134	178	0,5379	0,4210	0,5846		
9 R	200	45	51	0,3049	0,1420	0,0820		
10 J	220	192	51	0,8163	0,8298	0,1972		
11 G	63	121	77	0,1874	0,2969	0,2465		
12 B	10	57	119	0,0680	0,0876	0,3821		
13	236	190	149	0,8405	0,7665	0,5879		
14	70	89	44	0,1824	0,2066	0,1117		
15 N	45	48	47	0,0670	0,0659	0,0817		
16 Z	103	109	106	0,3205	0,3169	0,3581		
17 W	255	255	255	1,0000	1,0000	1,0000		

Foto-O	CD mi	it CIE-	Testfa	arben: $u = u$	nnormie	te Daten
Nr.	O_u^*	L_u^*	V_u^*	$X_{\text{sollk},u}$	$Y_{\text{sollk},u}$	$Z_{\text{sollk},u}$
1	141	109	95	0,3587	0,3203	0,2553
2	128	119	65	0,3113	0,3208	0,1577
3	102	129	45	0,2777	0,3538	0,1006
4	83	130	79	0,2383	0,3395	0,2272
5	82	132	130	0,2844	0,3547	0,3920
6	95	122	158	0,3029	0,3269	0,5119
7	136	115	160	0,3506	0,3092	0,4580
8	187	117	148	0,3869	0,3206	0,3899
9 R	173	40	43	0,2193	0,1081	0,0547
10 J	190	168	43	0,5872	0,6319	0,1315
11 G	55	106	64	0,1348	0,2261	0,1644
12 B	9	50	99	0,0489	0,0667	0,2548
13	204	166	124	0,6046	0,5837	0,3921
14	61	78	37	0,1312	0,1573	0,0745
15 N	39	42	39	0,0482	0,0502	0,0545
16 Z	89	95	88	0,2305	0,2413	0,2388
17 W	220	222	211	0,7193	0,7615	0,6669

Bild 8_48 Bilddaten *OLV**, korrigiertes Soll XYZ 7371_2, 7370_3, 7370_4 *OLV**-Farbheiten für die 17 CIE-Testfarben, abgespeichert auf einer *Kodak*-Foto-CD sowie die Soll-Normfarbwerte XYZ_{sollk}

Bild 8_48 erinnert *links oben*, daß am Farbmonitor eine Abweichung zwischen den Normfarbwerten XYZ_{soll} im PSL2-Programm und den Farbmeßwerten XYZ_{ist} am Farbmonitor bestehen kann. Wenn man im Programm die Differenzen $XYZ_{soll} - XYZ_{ist}$ addiert, so ergeben sich Werte XYZ_{sollk} , welche oft eine um 50 % verbesserte Wiedergabe im Vergleich zu den Farben XYZ_{soll} ergeben. Es liegt daher nahe, für die Optimierung die Werte XYZ_{sollk} anstelle von XYZ_{soll} (Normfarbwerte der Original-CIE-Testfarben) zu verwenden.

Bild 8_48 zeigt *oben rechts* und *unten links* diese unnormierten und normierten Daten. Die Daten *XYZ*_{sollk} sind ähnlich den Daten *XYZ*_{soll} von Bild 8_47 auf Seite 257. Die CIE-Testfarbe Weiß ist *unten links* wieder für alle Daten (*OLV**, *OLV* und *XYZ*) auf die Werte 255 bzw. 1 normiert.

CIEBasedABC-Farbraum in PSL2	CIEBasedABC-Farbraum in PSL2
$OLV_n^* \rightarrow OLV_n \rightarrow XYZ_{\text{soll},n}$	$OLV_n^* \rightarrow OLV_n \rightarrow XYZ_{\text{sollk},n}$
NEC-Bildschirm und NeXTstep	NEC-Bildschirm und NeXTstep
$O = \text{Decode}O^* = \{1.16 \text{ mul } 1.63 \text{ exp}\}$	$O = \text{Decode}O^* = \{1.16 \text{ mul } 1.48 \text{ exp}\}$
$L = \text{Decode}L^* = \{1.15 \text{ mul } 1.62 \text{ exp}\}$	$L = \text{Decode}L^* = \{1.15 \text{ mul } 1.47 \text{ exp}\}$
$V = \text{Decode}V^* = \{1.21 \text{ mul } 1.51 \text{ exp}\}$	$V = \text{Decode}V^* = \{1.21 \text{ mul } 1.26 \text{ exp}\}$
$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0,447 & 0,545 & 0,055 \\ 0,191 & 0,904 & -0,056 \\ -0,050 & 0,120 & 0,952 \end{pmatrix} \times \begin{pmatrix} O \\ L \\ V \end{pmatrix}$	$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0,448 & 0,599 & 0,002 \\ 0,146 & 0,999 & -0,102 \\ -0,071 & 0,000 & 0,952 \end{pmatrix} \times \begin{pmatrix} O \\ L \\ V \end{pmatrix}$

Bild 8_49 Optimierte Farbraum-Transformationen 7370_7, 7370_8 Optimierte Farbraum-Transformationen zwischen *OLV**-Foto-CD-Bilddaten und normierten Normfarbwerten *XYZ*_{soll} bzw. *XYZ*_{sollk}

Bild 8_49 zeigt optimierte Farbraum-Transformationen zwischen OLV^* -Foto-CD-Farbheiten und normierten Normfarbwerten XYZ_{soll} bzw. XYZ_{sollk} . Die unnormierten OLV^* -Foto-CD-Daten werden zunächst mit drei Faktoren multipliziert und durch Exponenten mit Werten um 1,6 in OLV-Farbwerte verwandelt. Zwischen diesen und den Normfarbwerten XYZ wurde die angegebene 3×3 -Matrix berechnet.

Die Bild-Optimierung wurde unter der Nebenbedingung durchgeführt, daß die Abweichungen zwischen XYZ_{opt} und XYZ_{soll} (Bild links) bzw. XYZ_{sollk} (Bild rechts) minimal werden. Mit der 3 × 3-Matrix im rechten Bild sind die Farbmeßwerte am Bildschirm etwa 50 % gegenüber der Matrix im linken Bild verbessert. Diese Verbesserung nimmt ab mit zunehmender Wiedergabe-Güte (Justierung) des Gesamtsystems (NeXTstep-Betriebssystem und Farbmonitor).

8.21 Optimierung der Farbmonitor-Bildwiedergabe

Ein farbmetrisch besseres Prinzip für die Ausgleichsrechnung ist eine Minimalisierung der Farbheiten *Lab** im CIELAB-Farbenraum anstelle der Normfarbwerte im CIEXYZ-Normvalenzsystem. Auf die Darstellung dieser Möglichkeit für die Foto-CD-Daten wird hier verzichtet, da die Methoden zur Lösung dieser Aufgabe den hier angegebenen gleichen. Eine Bild-Optimierung im CIELAB-Farbenraum führt in der Regel zu einer Verbesserung der Wiedergabe für dunkle Farben und einer Verschlechterung für helle Farben. Die visuellen Abweichungen sind bei dieser Ausgleichsrechnung gleichmäßiger über den gesamten Farbenraum verteilt. Zur Lösung dieser Aufgabe werden die Daten der 17 CIE-Testfarben im Farbenraum CIELAB 1976 für die Normlichtart D65 benötigt.

Farbn	naßzal	hlen der	: 17 CI	E-Testfarl	oen na	ch DIN	6169 ,,Fa	arbwied	lergabe"
Farb–	CIE	ELAB-Da	ten	Norm	farbwe	rte und	–anteile		
Nr.	L^*	<i>a</i> *	b *	X	Y	Ζ	x	у	Y
01	61,45	17,53	11,74	32,98	29,76	24,59	0,3776	0,3407	29,76
02	60,69	0,08	28,92	27,49	28,90	15,01	0,3850	0,4047	28,90
03	62,02	-20,59	44,41	23,93	30,43	9,96	0,3720	0,4731	30,43
04	61,20	-33,17	17,07	20,45	29,48	21,27	0,2872	0,4140	29,48
05	62,40	-17,48	-8,56	25,02	30,87	40,42	0,2597	0,3205	30,87
06	61,51	-0,37	-28,40	28,26	29,83	57,91	0,2436	0,2571	29,83
07	61,12	20,15	-24,56	33,33	29,39	53,22	0,2874	0,2534	29,39
08	62,77	27,42	-13,64	37,57	31,31	45,44	0,3286	0,2738	31,31
09	39,92	58,74	27,99	20,48	11,20	4,36	0,5682	0,3107	11,20
10	81,26	-2,90	71,56	54,87	58,94	12,08	0,4358	0,4681	58,94
11	52,23	-42,43	13,60	12,12	20,35	15,33	0,2535	0,4257	20,35
12	30,57	1,41	-46,48	6,28	6,47	27,73	0,1551	0,1598	6,47
13	80,23	11,37	21,04	58,85	57,09	41,39	0,3740	0,3628	57,09
14	40,75	-13,81	24,23	9,35	11,71	5,43	0,3529	0,4420	11,71
15	22,27	0,12	-0,17	3,42	3,59	3,94	0,3123	0,3278	3,59
16	51,65	0,00	0,04	18,85	19,83	21,57	0,3128	0,3291	19,83
17	89,93	0,02	0,03	72,39	76,15	82,89	0,3127	0,3290	76,15
	Farbn Farb– Nr. 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	FarbmaßzalFarbCIINr. L^* 01 $61,45$ 02 $60,69$ 03 $62,02$ 04 $61,20$ 05 $62,40$ 06 $61,51$ 07 $61,12$ 08 $62,77$ 09 $39,92$ 10 $81,26$ 11 $52,23$ 12 $30,57$ 13 $80,23$ 14 $40,75$ 15 $22,27$ 16 $51,65$ 17 $89,93$	Farbmaßzahlen der CIELAB-Da L* a^* Nr.L* a^* 01 $61,45$ $17,53$ 02 $60,69$ $0,08$ 03 $62,02$ $-20,59$ 04 $61,20$ $-33,17$ 05 $62,40$ $-17,48$ 06 $61,51$ $-0,37$ 07 $61,12$ $20,15$ 08 $62,77$ $27,42$ 09 $39,92$ $58,74$ 10 $81,26$ $-2,90$ 11 $52,23$ $-42,43$ 12 $30,57$ $1,41$ 13 $80,23$ $11,37$ 14 $40,75$ $-13,81$ 15 $22,27$ $0,12$ 16 $51,65$ $0,00$ 17 $89,93$ $0,02$	Farbmaßzahlen der 17 CIFarb-CIELAB-DatenNr. L^* a^* b^* 01 $61,45$ $17,53$ $11,74$ 02 $60,69$ $0,08$ $28,92$ 03 $62,02$ $-20,59$ $44,41$ 04 $61,20$ $-33,17$ $17,07$ 05 $62,40$ $-17,48$ $-8,56$ 06 $61,51$ $-0,37$ $-28,40$ 07 $61,12$ $20,15$ $-24,56$ 08 $62,77$ $27,42$ $-13,64$ 09 $39,92$ $58,74$ $27,99$ 10 $81,26$ $-2,90$ $71,56$ 11 $52,23$ $-42,43$ $13,60$ 12 $30,57$ $1,41$ $-46,48$ 13 $80,23$ $11,37$ $21,04$ 14 $40,75$ $-13,81$ $24,23$ 15 $22,27$ $0,12$ $-0,17$ 16 $51,65$ $0,00$ $0,04$ 17 $89,93$ $0,02$ $0,03$	Farbmaßzahlen der 17 CIE-TestfartFarb-CIELAB-DatenNormNr. L^* a^* b^* X01 $61,45$ $17,53$ $11,74$ $32,98$ 02 $60,69$ $0,08$ $28,92$ $27,49$ 03 $62,02$ $-20,59$ $44,41$ $23,93$ 04 $61,20$ $-33,17$ $17,07$ $20,45$ 05 $62,40$ $-17,48$ $-8,56$ $25,02$ 06 $61,51$ $-0,37$ $-28,40$ $28,26$ 07 $61,12$ $20,15$ $-24,56$ $33,33$ 08 $62,77$ $27,42$ $-13,64$ $37,57$ 09 $39,92$ $58,74$ $27,99$ $20,48$ 10 $81,26$ $-2,90$ $71,56$ $54,87$ 11 $52,23$ $-42,43$ $13,60$ $12,12$ 12 $30,57$ $1,41$ $-46,48$ $6,28$ 13 $80,23$ $11,37$ $21,04$ $58,85$ 14 $40,75$ $-13,81$ $24,23$ $9,35$ 15 $22,27$ $0,12$ $-0,17$ $3,42$ 16 $51,65$ $0,00$ $0,04$ $18,85$ 17 $89,93$ $0,02$ $0,03$ $72,39$	Farbmaßzahlen der 17 CIE-Testfarben nachFarb-CIELAB-DatenNormfarbweiNr. L^* a^* b^* X01 $61,45$ $17,53$ $11,74$ $32,98$ $29,76$ 02 $60,69$ $0,08$ $28,92$ $27,49$ $28,90$ 03 $62,02$ $-20,59$ $44,41$ $23,93$ $30,43$ 04 $61,20$ $-33,17$ $17,07$ $20,45$ $29,48$ 05 $62,40$ $-17,48$ $-8,56$ $25,02$ $30,87$ 06 $61,51$ $-0,37$ $-28,40$ $28,26$ $29,83$ 07 $61,12$ $20,15$ $-24,56$ $33,33$ $29,39$ 08 $62,77$ $27,42$ $-13,64$ $37,57$ $31,31$ 09 $39,92$ $58,74$ $27,99$ $20,48$ $11,20$ 10 $81,26$ $-2,90$ $71,56$ $54,87$ $58,94$ 11 $52,23$ $-42,43$ $13,60$ $12,12$ $20,35$ 12 $30,57$ $1,41$ $-46,48$ $6,28$ $6,47$ 13 $80,23$ $11,37$ $21,04$ $58,85$ $57,09$ 14 $40,75$ $-13,81$ $24,23$ $9,35$ $11,71$ 15 $22,27$ $0,12$ $-0,17$ $3,42$ $3,59$ 16 $51,65$ $0,00$ $0,04$ $18,85$ $19,83$ 17 $89,93$ $0,02$ $0,03$ $72,39$ $76,15$	Farbmaßzahlen der 17 CIE-Testfarben nach DINNr.CIELAB-DatenNormfarbwerte undNr. L^* a^* b^* XYZ01 $61,45$ $17,53$ $11,74$ $32,98$ $29,76$ $24,59$ 02 $60,69$ $0,08$ $28,92$ $27,49$ $28,90$ $15,01$ 03 $62,02$ $-20,59$ $44,41$ $23,93$ $30,43$ $9,96$ 04 $61,20$ $-33,17$ $17,07$ $20,45$ $29,48$ $21,27$ 05 $62,40$ $-17,48$ $-8,56$ $25,02$ $30,87$ $40,42$ 06 $61,51$ $-0,37$ $-28,40$ $28,26$ $29,83$ $57,91$ 07 $61,12$ $20,15$ $-24,56$ $33,33$ $29,39$ $53,22$ 08 $62,77$ $27,42$ $-13,64$ $37,57$ $31,31$ $45,44$ 09 $39,92$ $58,74$ $27,99$ $20,48$ $11,20$ $4,36$ 10 $81,26$ $-2,90$ $71,56$ $54,87$ $58,94$ $12,08$ 11 $52,23$ $-42,43$ $13,60$ $12,12$ $20,35$ $15,33$ 12 $30,57$ $1,41$ $-46,48$ $6,28$ $6,47$ $27,73$ 13 $80,23$ $11,37$ $21,04$ $58,85$ $57,09$ $41,39$ 14 $40,75$ $-13,81$ $24,23$ $9,35$ $11,71$ $5,43$ 15 $22,27$ $0,12$ $-0,17$ $3,42$ $3,59$ $3,94$ 16 $51,65$ <th>Farb</th> <th>Farbmaßzahlen der 17 CIE-Testfarben nach DIN 6169 "FarbwiedNr.LEAB-DatenNormfarbwerte und –anteileNr.$L^*$$a^*$$b^*$$X$$Y$$Z$$x$$y$0161,4517,5311,7432,9829,7624,590,37760,34070260,690,0828,9227,4928,9015,010,38500,40470362,02-20,5944,4123,9330,439,960,37200,47310461,20-33,1717,0720,4529,4821,270,28720,41400562,40-17,48-8,5625,0230,8740,420,25970,32050661,51-0,37-28,4028,2629,8357,910,24360,25710761,1220,15-24,5633,3329,3953,220,28740,25340862,7727,42-13,6437,5731,3145,440,32860,27380939,9258,7427,9920,4811,204,360,56820,31071081,26-2,9071,5654,8758,9412,080,43580,46811152,23-42,4313,6012,1220,3515,330,25350,42571230,571,41-46,486,286,4727,730,15510,15981380,2311,3721,0458,8557,0941,390</th>	Farb	Farbmaßzahlen der 17 CIE-Testfarben nach DIN 6169 "FarbwiedNr.LEAB-DatenNormfarbwerte und –anteileNr. L^* a^* b^* X Y Z x y 0161,4517,5311,7432,9829,7624,590,37760,34070260,690,0828,9227,4928,9015,010,38500,40470362,02-20,5944,4123,9330,439,960,37200,47310461,20-33,1717,0720,4529,4821,270,28720,41400562,40-17,48-8,5625,0230,8740,420,25970,32050661,51-0,37-28,4028,2629,8357,910,24360,25710761,1220,15-24,5633,3329,3953,220,28740,25340862,7727,42-13,6437,5731,3145,440,32860,27380939,9258,7427,9920,4811,204,360,56820,31071081,26-2,9071,5654,8758,9412,080,43580,46811152,23-42,4313,6012,1220,3515,330,25350,42571230,571,41-46,486,286,4727,730,15510,15981380,2311,3721,0458,8557,0941,390

Bild 8_50Farbmaßzahlen der CIE-Testfarben

7390_3

Farbmaßzahlen der 17 CIE-Testfarben für die Normlichtart D65 und den 2⁰-Normalbeobachter nach DIN 6169 "Farbwiedergabe"

Bild 8_50 zeigt die Farbmaßzahlen der 17 CIE-Testfarben für die Normlichtart D65 nach DIN 6169 "Farbwiedergabe". Die Farbmaßzahlen im Farbenraum CIELAB 1976 und im Normvalenzsystem CIEXYZ 1931 sowie die zugehörigen Normfarbwertanteile sind angegeben.

Entsprechend dem PSL2-Programm in Bild 8_39 auf Seite 247 kann man die Normfarbwerte *XYZ* in einem Programm benutzen, um ein Bild der 17 CIE-Testfarben auf dem Farbmonitor darzustellen. Hierzu ist ein PSL2-Betriebssystem notwendig, z. B. das Betriebssystem *NeXTstep*.

Mit einem Farbmeßgerät kann man die Lichtfarben am Farbmonitor messen und die Abweichungen im CIEXYZ Normvalenzsystem oder im Farbenraum CIELAB ermitteln.

Farba	abstan	d ΔE^*	Aufsich	tfarben –:	> Licht	farben	mit 3×3 -Matrix, $\gamma = 1,7$
Farb-	Soll-O	CIELAB	Werte	Ist-CIE	LAB We	rte	Farbabstand CIELAB
Nr.	L^*	<i>a</i> *	b *	L^*	<i>a</i> *	<i>b</i> *	ΔE^*
01	61,45	17,53	11,74	60,93	18,72	13,81	2,44
02	60,69	0,08	28,92	60,04	1,10	30,46	1,96
03	62,02	-20,59	44,41	61,60	-18,79	43,86	1,91
04	61,20	-33,17	17,07	61,26	-30,55	16,60	2,66
05	62,40	-17,48	-8,56	61,48	-12,40	-14,30	7,72
06	61,51	-0,37	-28,40	60,69	8,18	-38,62	13,35
07	61,12	20,15	-24,56	60,43	24,45	-32,53	9,09
08	62,77	27,42	-13,64	62,57	29,44	-16,63	3,62
09	39,92	58,74	27,99	49,51	51,50	40,79	17,56
10	81,26	-2,90	71,56	82,38	3,16	73,10	6,36
11	52,23	-42,43	13,60	53,30	-33,50	13,23	8,90
12	30,57	1,41	-46,48	35,01	18,53	-50,70	18,20
13	80,23	11,37	21,04	80,55	15,20	25,75	6,08
14	40,75	-13,81	24,23	41,04	-12,20	20,27	4,27
15	22,27	0,12	-0,17	23,43	0,00	-2,50	2,62
16	51,65	0,00	0,04	50,69	0,45	-2,69	2,93
17	89,93	0,02	0,03	89,93	2,83	-3,62	4,60
Farba	bstand	für alle	17 CIE-	Testfarben i	m Mitte	l:	6,70

Bild 8_51Soll- und Ist-Farben am Farbmonitor

7390_7

Farbmaßzahlen der 17 CIE-Testfarben für die Normlichtart D65 und den 2⁰-Normalbeobachter nach DIN 6169 "Farbwiedergabe" im Original (PSL2-Programm) und der Wiedergabe am Farbmonitor mit zugehörigem CIELAB-Farbabstand

Bild 8_51 zeigt Farbmaßzahlen der 17 CIE-Testfarben für die Normlichtart D65 und den 2^o-Normalbeobachter nach DIN 6169 "Farbwiedergabe" im Original (PSL2-Programm) und der Wiedergabe am Farbmonitor mit zugehörigem CIELAB-Farbabstand. Die Werte sind typisch für einen geeignet justierten Farbmonitor.

Bei Verwendung der Normfarbwerte XYZ im Programm muß der Übergang zwischen den Koordinaten Farbheit (*-Koordinaten) und Farbwert durch einen geeigneten Exponenten beschrieben werden. In unserem Beispiel wurde der optimale γ -Wert 1,7 ermittelt. Mit diesem ergibt sich eine sehr gute Anpassung für die unbunten CIE-Testfarben Nr. 15 (Schwarz), Nr. 16 (Mittelgrau) und Nr. 17 (Weiß) in der *L**-Helligkeit, vgl. Bild 8_51.

Der mittlere CIELAB-Farbabstand 6,7 führt zu einem mittleren Farbwiedergabe-Index von $R_{\rm m} = 100 - 4,6 \cdot 6,7 = 69,2$. Ohne geeigneten γ -Wert, z. B. mit dem γ -Wert 1,0, ergab sich ein Farbabstand von 20 CIELAB-Einheiten, also ein dreifach größerer Fehler.

Die Übereinstimmung der Helligkeiten L^* im Verhältnis 1 : 1 zwischen den Original-Aufsichtfarben (oder den im PSL2-Programm definierten Farben) und den Wiedergabe-Lichtfarben, die bei der Optimierung gefordert ist, ist aus visuellen Gründen nur in einem ersten Schritt gerechtfertigt.

Der Kontrastumfang im Hellbezugswert ist bei den matten CIE-Testfarben durch die Hellbezugswerte Y = 4 für Schwarz und Y = 80 für Weiß definiert. Bei glänzenden Aufsicht-Testfarben lassen sich der Hellbezugswert Y = 2 und für Bildschirm-Lichtfarben der Hellbezugswert Y = 0,5 erreichen. Der Kontrastumfang beträgt daher für Lichtfarben 1:200 gegenüber 1:40 für glänzende Farben und 1:20 für matte Farben. Man versucht aus visuellen Gründen, den technisch möglichen Kontrastumfang voll auszunutzen.

Die Lichtfarbe Schwarz am Bildschirm erscheint visuell schwärzer als die glänzende oder matte Aufsichtfarbe Schwarz. Bild 6_30 auf Seite 191 gibt Hinweise, wie die Hellbezugswerte *Y* bzw. Helligkeiten *L** zwischen Original und Wiedergabe zu transformieren sind. Im Prinzip ist ein zusätzlicher Gamma-Wert bis 1,25 zu berücksichtigen, wenn die Sollmeß-Hellbezugswerte des Wiedergabe-Bildschirms zu definieren sind. Diese zusätzliche Gamma-Transformation darf jedoch nicht bei der Berechnung der Farbabstände im CIELAB-Farbenraum berücksichtigt werden.

Für den Hellbezugswert um Y = 0,5 berechnet man eine Helligkeite $L^* < 5$ im CIELAB-Farbenraum. Gegenüber der Aufsichtfarbe mit dem Hellbezugswert Y = 4 und der zugehörigen Helligkeit $L^* = 20$ würde sich ein Farbabstand von 15 berechnen, der erwünscht ist und daher *nicht* in die Berechnung des mittleren Farbwiedergabe-Index eingehen darf. Entsprechende Normen für diesen wichtigen Anwendungsfall wurden bisher *nicht* entwickelt. Aus dem Kontrastumfang sollte man daher den zusätzlichen Gammawert ermitteln und bei der Farbmonitor-Justierung berücksichtigen.

Die Ermittlung des mittleren Farbwiedergabe-Index, zum Beispiel für Farbkopierer, mit realen 17 CIE-Testfarben erfordert bei hohen Genauigkeitsansprüchen andere Daten als die in Bild 8_50 auf Seite 260 angegebenen:

Bei realen Experimenten mit 17 CIE-Testfarben, die von der BAM zusammen mit den Normfarbwerten *XYZ* für die Normlichtart D65 geliefert werden, sollten für genauere Justierungen die jeweiligen Meßwerte benutzt werden. Der mittlere Farbabstand der BAM-Muster liegt in der Regel bei drei CIELAB-Einheiten gegenüber den Soll-Werten der Norm DIN 6169 "Farbwiedergabe".

9 Literatur

9.1 Bücher

Berger-Schumm, A.: Praktische Farbmessung, Göttingen, Muster-Schmidt, 2. Auflage, 1994, 196 Seiten, ISBN 3-7881-4049-6

Hunt, R. W. G.: The Reproduction of Colour in Photography, Printing and Television, 3. Aufl., Fountain Preß, England, 1975, ISBN 0 85242 356X

Hunt, R. W. G.: Measuring Colour, New York: Ellis Horwood, N.Y., 1991, 313 Seiten, ISBN 0-13-567686-X

Judd, D.B., Wyszecki, G.: Color in Business, Science, and Industry, 3. Auflage, New York: Wiley, 1975, 553 Seiten, ISBN 0-471-45212-2

Kuehni, R. G.:, Color: essence and logic, New York: van Nostrand, 1983, 138 Seiten, ISBN 0-442-24722-2

Kammermeier, P. und A.: Scannen und Drucken, Perfekte Fotos mit DTB, Bonn: Addison-Wesley, 1990, 333 Seiten, ISBN 3-89319-217-4

Lang, H.: Farbmetrik und Farbfernsehen, München: Oldenbourg-Verlag, 1978, 468 Seiten, ISBN 3-486-20661-3

Loos, H.: Farbmessung, Grundlagen der Farbmetrik und ihre Anwendungsbereiche in der Druckindustrie, Itzehoe: Verlag Beruf + Schule, 1989, ISBN 3-88013-380-8

Richter, K.: Beschreibung von Problemen der höheren Farbmetrik mit Hilfe des Gegenfarbensystems, Bremerhaven: Wirtschaftsverlag NW, BAM-Forschungsbericht Nr. 61 und Habilitationsschrift TU Berlin, 1979, 97 Seiten, 108 Abbildungen, 40 Tabellen, ISSN 0172-7613

Richter, K.: Farbempfindungsmerkmal Elementarbuntton und Buntheitsabstände als Funktion von Farbart und Leuchtdichte von In- und Umfeld, Bremerhaven: Wirtschaftsverlag NW, Forschungsbericht Nr. 115 der Bundesanstalt für Materialprüfung (BAM), 1985, 119 Seiten, ISBN 3-88314-420-7

Richter, M.: Einführung in die Farbmetrik, Berlin: W. de Gruyter, Sammlung Göschen, Band 2608, 1982, 274 Seiten, ISBN 3-11-004751-9

Schultze, W.: Farbenlehre und Farbmessung, 3. Aufl., Berlin, Heidelberg: Springer-Verlag, 1975, 97 Seiten, ISBN 3-540-07214-4 *Sproson, W. N.*: Color Science in Television and Display Systems, Bristol: Adam Hilger Ltd, 1983, 221 Seiten, ISBN 0-85274-413-7

Stevens, S. S.: Psychophysics. Introduction to its perceptual, neural and social prospects. New York: Wiley, 1975, 329 Seiten, ISBN 0-471-82437-2

Völz, H. G.: Industrielle Farbprüfung, Grundlagen und Methoden, Farbmetrische Testverfahren für Farbmittel in Medien, Weinheim: VCH Verlagsgesellschaft, 1990, 277 Seiten, ISBN 3-527-28083-9

Wyszecki, G.; Stiles, W. S.: Color science: concepts and methods, quantitative data and formulas, New York: Wiley, 1979, 628 Seiten

9.2 Normen und ähnliche Veröffentlichungen

American Society for Testing and Materials (ASTM), ASTM D 1535 (1989), Test method for specifying color by the Munsell system

CEPT (1983), Conference European Post and Telecommunication Administrations: "Videotex Presentation Layer Data Syntax", Issue 2, recommend T/CD 6

Commission Internationale de l'Eclairage (CIE) (1987), Vocabulaire internationale de l'Eclairage. International lighting vocabulary. Internationales Wörterbuch der Lichttechnik. 4. Aufl., CIE-Publikation Nr. 17

Commission Internationale de l'Eclairage (CIE) (1986), Colorimetry. Colorimetrie. Farbmessung. CIE-Publikation Nr. 15.2

Commission International de l'Eclairage (CIE) (1974), Verfahren zur Messung und Kennzeichnung der Farbwiedergabeeigenschaften von Lichtquellen. CIE-Publikation Nr. 13.2 (Technisches Komitee 3.2), Paris 1974

Commission Internationale de l'Eclairage (CIE) (1978), Official recommendation on color spaces, color difference equations and metric color terms, Suplement No. 2 for CIE-Publication No. 15, Colorimetry (E-1.3.1) 1971

Commission Internationale de l'Eclairage (CIE) (1993), Parametric effects in colour-difference evaluation. CIE-Publikation Nr. 101

Deutsches Institut für Normung (1984) DIN 4023 (1984), Baugrund- und Wasserbohrungen. Zeichnerische Darstellung der Ergebnisse

Deutsches Institut für Normung, (1982) DIN 4844 (1982), Sicherheitskennzeichnung

```
Deutsches Institut für Normung, (1989)
DIN 5023 (1989), Deckfarben-Malkasten
```

Deutsches Institut für Normung, (1966 bis 1992)
DIN 5033 Beibl. (1967), Farbmessung; Inhaltsverzeichnis und Stichwortverzeichnis zu DIN 5033 Teil 1 bis 9
DIN 5033 Teil 1 (1979), Farbmessung; Grundbegriffe der Farbmetrik DIN 5033 Teil 2 (1992), Farbmessung; Normvalenz-Systeme
DIN 5033 Teil 3 (1992), Farbmessung; Farbmaßzahlen
DIN 5033 Teil 4 (1992), Farbmessung; Spektralverfahren
DIN 5033 Teil 5 (1981), Farbmessung; Gleichheitsverfahren
DIN 5033 Teil 7 (1983), Farbmessung; Meßbedingungen f. Körperfarben
DIN 5033 Teil 9 (1982), Farbmessung; Weißstandard für Farbmessung und Photometrie
DIN 5381 (1985), Kennfarben

Deutsches Institut f
ür Normung, (1960 bis 1981)
DIN 6164 Teil 1 (1980), DIN Farbenkarte; System der DIN-Farbenkarte f
ür den 2 Grad-Normalbeobachter
DIN 6164 Teil 2 (1980), DIN-Farbenkarte; Festlegung der Farbmuster
DIN 6164 Teil 3 (1981), DIN-Farbenkarte; System der DIN-

- Farbenkarte für den 10 Grad-Normalbeobachter
- DIN 6164 Beiblatt 50 (1981), DIN-Farbenkarte; Farbmaßzahlen für Normlichtart C.

Anmerkung: matte Farbmuster nach DIN 6164 Teil 2 werden geliefert von Musterschmidt KG, Göttingen,

Deutsches Institut für Normung, 1983 Übersichtskarte zur DIN-Farbenkarte DIN 6164 als Leporello mit 1001 Farbmustern (vergriffen)

Deutsches Institut für Normung, (1976 bis 1979)

DIN 6169 Teil 1 (1976), Farbwiedergabe; Allgemeine Begriffe

- DIN 6169 Teil 2 (1976), Farbwiedergabe; Farbwiedergabe-Eigenschaften von Lichtquellen in der Beleuchtungstechnik
- DIN 6169 Teil 4 (1976), Farbwiedergabe; Verfahren zur Kennzeichnung der Farbwiedergabe in der Farbfotografie
- DIN 6169 Teil 5 (1976), Farbwiedergabe; Verfahren zur Kennzeichnung der objektbezogenen Farbwiedergabe im Mehrfarbendruck
- DIN 6169 Teil 6 (1976), Farbwiedergabe; Verfahren zur Kennzeichnung der Farbwiedergabe in der Farbfernsehtechnik mit Bildaufnahmegeräten

- DIN 6169 Teil 7 (1979), Farbwiedergabe; Verfahren zur Kennzeichnung der Farbwiedergabe bei der Fernseh-Farbfilmabtastung
- DIN 6169 Teil 8 (1979), Farbwiedergabe; Verfahren zur Kennzeichnung der farbbildbezogenen Farbwiedergabe im Mehrfarbendruck

Deutsches Institut für Normung, (1973) DIN 6172 (1973), Metamerie-Index von Probenpaaren bei Lichtartwechsel

Deutsches Institut für Normung, (1975 bis 1983)

DIN 6173 Teil 1 (1975), Farbabmusterung; Allgemeine Farbabmusterungsbedingungen

DIN 6173 Teil 2 (1983), Farbabmusterung; Beleuchtungsbedingungen für künstliches mittleres Tageslicht

Deutsches Institut für Normung, (1979)

DIN 6174 (1979), Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der CIELAB-Formel

Anmerkung: glänzende Farbmuster nach DIN 6174 (CIELAB-System) werden geliefert vom RAL als RAL-Design-Farbsystem (1700 Muster in verschiedenen Formaten)

Deutsches Institut für Normung, (1986)

DIN 6175 Teil 1 (1986), Farbtoleranzen für Automobillackierungen, Unilackierungen

Deutsches Institut für Normung, (1969) DIN 16538 (1969), Europäische Farbskala für den Buchdruck

Deutsches Institut für Normung, (1971) DIN 16539 (1971), Europäische Farbskala für den Offsetdruck

Deutsches Institut für Normung, (1983)

DIN 19300 Teil1 (1983), Papier und Pappe, Vorzugsfarben für holzhaltige Naturpapiere

Deutsches Institut für Normung, (1986) Bergmännisches Rißwerk, Farben

Fachnormenausschuß Farbe (FNF), Richtlinien zur farbigen Raumgestaltung, Die Farbe 11 (1962), Nr. 1/6, S. 7-18; 265-274

International Standards Organisation (ISO) ISO/CIE 10526: 1991 (E), CIE standard colorimetric illuminants ISO/CIE 10527: 1991 (E), CIE standard colorimetric observers Schwedisches Institut für Normung (Swedish Standard), (1978 bis 1979) SS 019100 (1978); Color notation system

- SS 019100 (1970); CIE tristimulus values and chromaticity co-ordinates for some 16000 color notations according to SS 019100
- SS 019102 (1979); Color atlas
- SS 019103 (1979); CIE tristimulus values and chromaticity co-ordinates for the samples in SS 019102

9.3 Einzeldarstellungen

Alman, D. H. (1993), CIE Technical Committee 1-29, Inustrial color-difference evaluation, Progress report, Color Res. Appl. 18, S. 137-139.

Biesalski, E. (1957) Planzenfarbenatlas für Gartenbau, Landwirtschaft und Forstwesen mit Farbzeichen nach DIN 6164, Göttingen: Musterschmidt

Bodmann, H. W. und Voit, E. (1960), Lichtfarbe und Farbwiedergabe bei kontinuierlicher Strahlung mit überlagerten Spektrallinien, Lichttechnik 12, Nr. 6, S. 359-361

Brockes, A. (1977), Was ist Farbtiefe?, Farbe + Design, Nr. 6, S. 19-21

Camoulacos, C. (1990), Herstellung eines Druckfarbenatlasses nach dem CEPT-Standard mit über 4096 Farben nach farbmetrischen Kriterien, Farbe + Design Nr. 47/48

Döring, G. (1979), Technische Arbeiten zur Herstellung der DIN-Farbenkarte mit glänzenden Mustern, Farbe und Design, Nr. 12, S. 10-15.

Döring, G. (1980), Vergleich von Farbsammlungen mit Farbkarten aus Farbsystemen. Farbe und Design, Nr. 15/16, S. 2-12.

Döring, G. (1983/84), Projektion des schwedischen Natural Color Systems (NCS) in das Farbsystem DIN 6164, Die Farbe 31, Nr. 1/3, S.27-41.

Döring, G. und K. Witt (1986), Probleme der NCS-Farbkennzeichnung, Farbe + Lack 92, Nr. 8, S. 697-700.

Döring, G. und K. Witt (1992), Probenspezifische Probleme der Farbmessung, tm - Technisches Messen 59, Nr. 5, S. 196-208

Evans, R. M. und S. B. Swenholt (1967), Chromatic Strength of Colors; Dominant Wavelength and Purity, J. opt. Soc. Amer. 57, S. 1319-1324

Gasser, M., Bilger, H., Hoffmann, K. D. und K. Miescher (1959), Spektraler Farbintegrator, Experientia 15/2, S. 52-55

Hard, A. (1969), Quality attributes of color perception, in: Color 69, AIC-Tag. Ber. Stockholm, Göttingen: Musterschmid, S. 351-368

Heinrich, F. (1977), CIELAB ein neues Farbkoordinatensystem der CIE in Verbindung mit einer neuen Farbabstandsformel, Defazet 31, Nr. 8, S. 318-324

Judd, D.B. (1953), Color in Business, Science and Industry, New York: Wiley, insbesondere S. 285

Judd, D. B. und D. Nickerson (1975), Relation between Munsell and the Swedish Natural Color System scales, J. opt. Soc. Amer. 65, S. 85-90Kowaliski, P. (1969), Equivalent Luminances of Colors, J. opt. Soc. Amer. 59, S. 125-130

MacAdam, D. L. (1974), Uniform color scales, J- Opt. Soc. Amer. 64, S. 1691-1702.

MacAdam, D. L. (1978), Colorimetic data for samples of OSA uniform color scales, J. opt. Soc. Amer. 68, Nr. 1, S. 121-130

Mayer, N. (1972), Der Farbwiedergabe-Index in der Fernsehtechnik, Rundfunktechnische Mitteilungen 16, Nr. 6, S. 249-255.

Miescher, K. (1930), Über das Vollfarbsystem, Z. techn. Physik 11, S. 233-239.

Miescher, K. (1948), Neuermittlung der Urfarben und deren Bedeutung für die Farbordnung, Helv. Physiol. Acta 6, C12-C13

Miescher, K., Hoffmann, K.D., Weisenhorn, P., Früh, M. (1961), Über das natürliche Farbsystem, Die Farbe 10, S. 115-144

Miescher, K., Richter, K. und Valberg, A. (1982), Farbe und Farbsehen, Beschreibung von Experimenten für die Farbenlehre, Farbe + Design, Nr. 23/24, S. 2-23 (Teil 1 dieses Kursus)

Minato, S. (1977), Farbe im Industriedesign, Farbe + Design, Nr. 8, S. 2-7

Munsell Book of Color (Ausgabe 1972), Cabinet Edition, Removable glossy surface samples in two binders, Bezugsquelle z. Z. Munsell Color, 2441 Calvert Street, Baltimore, Maryland 21218, USA

Newhall, S.M., D. Nickerson und D.B. Judd (1943), Final report of the O.S.A. subcommittee on the spacing of the Munsell colors. J. opt. Soc. Amer. 33, S. 385-418

Nickerson, D. and K.F. Stultz (1944), Color tolerance specification, J. opt. Soc. Amer. 34, S. 550-570

Nickerson, D. (1979), Gleichabständige OSA-Farbreihen. Einzigartiges Farbmustersortiment, Farbe + Design, Nr. 12, S. 16-24

Nickerson, D. (1981), OSA uniform color scale samples: a unique set, Color, research and application 6, Nr. 1, S. 7-33

Pointer, M. R. (1974), Color discrimination as a function of observer adaptation. J. opt. Soc. Amer. 64, Nr. 6, S. 750-759.

Smith, N. S., T. W. A. Whitfield und T. J. Wiltshire (1990), A colour notation conversion program, Color Res. Appl. 15, S. 338-343.

Steen, P. (1969), Experiments with estimation of perceptive qualitative color attributes, in: Color 69, AIC-Tag. Ber. Stockholm, Göttingen: Musterschmid, S. 369-376

Richter, K. (1969), Antagonistische Signale beim Farbensehen und ihr Zusammenhang mit der empfindungsgemäßen Farbordnung, Dissertation, Universität Basel, insbesondere S. 79.

Richter, K. (1978b), Modell für einheitliche lichttechnische und farbmetrische Hellempfindungsgrößen. Tag.-Ber. Lichttechnische Gemeinschaftstagung, Amsterdam 1978, S. 461-473

Richter, K. (1979a), Kritik, Modifikation und Erweiterung des Farbenraums CIELAB 1976, Farbe + Design, Nr. 11, S. 3-11

Richter, K. (1980a), Cube root color spaces and chromatic adaptation, Color research and application 5, Nr. 1, S. 24-45

Richter, K. (1980b), CIE color spaces and proposals for modification, Acta Chromatica 5, Nr. 4, S. 274-276

Richter, K. (1980c), Farben und ihre Wiedergabe in der Photographie, Farbe + Design, Nr. 15/16, S. 42-49

Richter, K. und W. Blatt (1982), Bewertung und Kennzeichnung von Farbfilmmaterialien bei Variation von Aufnahmelichtart, Belichtung und Projektionsleuchtdichte, Fernseh- und Kinotechnik, 36, Nr. 4, S. 141-148

Richter, K. (1984), Mikrofilmraster in Vektorgrafik zur Erzeugung von 4096 Farben von Bildschirmtext im Mehrfarbendruck, in ONLINE '84, 7. Europäische Kongressmesse für technische Kommunikation, Kongress V, CAD/CAM und Computer-Graphik, Berlin, S. 6S, 1-16.

Richter, K. (1984), CEPT-Farben bei Bildschirmtext und ihre Reproduktion im Mehrfarben-Offsetdruck, Tag.-Ber. Licht '84, Mannheim, Band I, Vortrag Nr. 15, 12 Seiten

Richter, K. (1985), 4096 Farben am Farbmonitor und ihre Reproduktion im Standard-Mehrfarbendruck für CADCAM, in: CADCAM databook, Sprechsaal-Verlag, Coburg, S. 75-81

Richter, K. (1986) Kostengünstiges Verfahren zur Farbreproduktion von Bildschirmtextbildern; 4096 Farben im Standard-Offsetdruck in hoher Qualität (mit 25 Farbbildern); Farbe + Design Nr. 37/38 (1986), S. 38-41

Richter, K. (1987), DIN-A3-Seitenlayout mit 16 Bildschirmtextbildern und Reproduktion im Standard-Mehrfarbendruck, Farbe und Design, Nr. 41/42, S. 44-48

Richter, K. (1988), Beschreibung des Leuchtdichte-Unterscheidungsvermögens durch einen schmal- und breitbandigen Schwarz-Weiß-Gegenfarbenprozeß, Tagungsberichte Licht '88, Lichttechnische Gesellschaft, Berlin, Band 2, S. 421-433

Richter, K. (1990), Farben, Farbmischung und Farbmetrik, BAM, Berlin, (mit 4 Seiten Farbdrucke für BAM-Ausstellung in Bonn 1990), 8 Seiten

Richter, K. (1992), Herstellung eines Druckfarbenatlasses nach dem CEPT-Standard mit 4096 Farben nach farbmetrischen Kriterien, In: Informatic Xpress: Farbe und Kommunikation, Herausg. Detlef Krömker und Johannes Röhrich, Darmstadt: Fraunhofer-Institut, S. 121-130

Richter, K. (1992), Thresholds and scaling of light and color by an opponent model of vision, AIC-Proceedings Colour & Light '91, Sydney, S. 25-29

Richter, K. (1993), Chromaticity diagrams, blackness and whiteness, Proceedings of the CIE-Symposium Advanced Colorimetry, Publication CIE 007, Wien 1993, S.79-84

Richter, K. (1994), Color appearance, attributes and thresholds, Proceedings of 1994 Anual Conference and '94 International Symposium of the Illuminating Engineering Institute of Japan, Ohmiya (Japan), S. 71-77

Richter, M. (1950), Untersuchungen zur Aufstellung eines empfindungsgemäß gleichabständigen Farbsystems, Z. für wiss. Photographie 45, S. 139-162

Richter, M. (1963), Über Entstehung, Aufbau und Anwendung der DIN-Farbenkarte DIN 6164, DIN-Mitteilungen 42, Nr. 6, S. 269-275

Richter, M. (1983/84), Über die Dunkelstufe, Die Farbe 31, Nr. 1/3, S. 97-125

Schoppmeyer, J. (1982), Zur Überdeckung der Rasterpunkte und Farbtonschwankungen im Mehrfarbendruck, Der Polygraph 17, S. 1510-1526

Schrödinger, E. (1920), Theorie der Pigmente größter Leuchtkraft, Ann. Physik (IV) 62, S. 603-622

Valberg, A. (1974), Lateral interactions between large retinal stimuli and symmetric receptive fields, Physica Norvegica 7, S. 227-235

Witt, K. (1981a), Der Farbenraum nach DIN 6164 in neuer Sicht, Farbe 29, Nr. 1/3, S. 17-52.

Witt, K. (1981b), Das OSA/UCS-Farbsystem aus der Sicht von DIN 6164, Farbe + Design, Nr. 19/20, S. 49-52

Witt, K. (1983), Die DIN-Farbenkarte als Ordnungshilfe für Farbvorlagen, Farbe + Lack 89, Nr. 8, S. 628-629

Witt, K. (1985/86), Farbmetrische Beschreibung gerade erkennbarer Farbunterschiede an Lackmustern, Farbe 32/33, S. 9-23

Witt, K. (1987), DIN-Farbenkarte --NCS-Farbenkarte im Konflikt ?, I-Lack 55, Nr. 6, S. 222-223.

Witt, K. (1987), Three-dimensional threshold of color difference perceptibility in painted samples; variability of observers in four CIE color regions, Color Res. Apll. 12, Nr. 3, S.128-134

Witt, K. (1989), Messung und Bewertung von farbigen Oberflächen, in: Farbeffekte und Oberflächentechnik, 11. Ulmer Gespräch, Saulgau: Lenke Verlag, S. 18-23

Witt, K. (1990), Parametric effects on surface color difference evaluation at threshold, Color Res. Appl. 15, Nr. 4, S. 189-199

Witt, K. (1991), Farbtoleranzen als Maß für die Wetterbeständigkeit der Stückbeschichtung von Bauteilen (GSB-Richtlinien), in DFO (Hrsg.), Neue Entwicklungen in der Oberflächenbehandlung von Aluminium, Tag.-Ber. 18, Düsseldorf, S.225-234

9.4 PostScript-Literatur

Die Programmiersprache **PostScript** bietet einen weitgehend geräteunabhängigen Standard zur Beschreibung von Text und Grafik auf einer Druckseite. Dieser Standard wurde von *Adobe Systems* 1985 veröffentlicht. Inzwischen wurde der sogenannte Level-2-Standard (1990) veröffentlicht, der eine Programmierung der Farben des Layouts in einem CIE-Farbsystem zuläßt.

Auf dem Markt gibt es inzwischen mehrere Schwarz-Weiß-Laserdrucker nach diesem Standard. Der erste Farbdrucker nach diesem Standard ist der *Tektronix* Phase III. Die Hersteller von Scannern, Farbmonitoren, Laserbelichtern, Farbkameras usw. versuchen inzwischen, ihre Gerätekoordinaten (R, G, B oder C, M, Y, N) in Koordinaten eines CIE-Farbsystems (z. B. X, Y, Z) zu transformieren, z. B. mit einer 3×3 -Matrixtransformation oder als Tabelle in einem ROM-Speicher für 16 Millionen Farben. In diesem Sinne wird dann die Verwendung von Farbe geräteunabhängig, und zwar auf der Basis eines CIE-Farbsystems (CIEXYZ oder CIELAB).

Die ersten entsprechenden PostScript-Handbücher in deutscher Sprache sind 1987/88 erschienen. Der PostScript-Standard wurde inzwischen von allen führenden Rechnerherstellen (*IBM, DEC, Apple, Next, Commodore usw.*) angenommen und in entsprechende Hard- und Software-Produkte integriert.

Literatur von Adobe zum PostScript-Standard:

Adobe Systems Inc. (1987), PostScript, Einführung und Leitfaden, Bonn: Addison-Wesley, ISBN 3-925118-70-5

Adobe Systems Inc. (1988), PostScript, Programmiertechniken, Bonn: Addison-Wesley, 207 Seiten, ISBN 3-89319-138-0 (mit Diskkette für IBM-Format)

Adobe Systems Inc. (1988), PostScript, Handbuch, Bonn: Addison-Wesley, 310 Seiten, ISBN 3-925118-79-9

Adobe Systems Inc. (1988), PostScript language program design, Reading: Addison-Wesley, 224 Seiten, ISBN 0-201-14396-8

Adobe Systems Inc. (1990), Thinking in PostScript, Reading: Addison-Wesley, 221 Seiten, ISBN 0-201-52372-8

Adobe Systems Inc. (1990), PostScript language reference manual, Reading: Addison-Wesley, 764 Seiten, ISBN 0-201-18127-4 (Level-2-Standard-Werk, im Buch als PSL2-Handbuch bezeichnet)

10 Übungsaufgaben und farbmetrische Koordinaten

10.1 Übung 1: Farbvalenzmetrische Auswertung

Für die Berechnung der Normfarbwerte gilt:

$$X = \bar{x}(\lambda_1) S(\lambda_1) R(\lambda_1) + \bar{x}(\lambda_2) S(\lambda_2) R(\lambda_2) + \dots + \bar{x}(\lambda_n) S(\lambda_n) R(\lambda_n).$$

Entsprechendes gilt für *Y* und *Z*. $R(\lambda)$ sind die spektralen Reflexionsfaktoren. Für die Normlichtart *D65*, den 2^o-Normalbeobachter und für Wellenlängenintervalle von $\Delta \lambda = 10$ nm sind die Produkte $\bar{x}(\lambda) S(\lambda)$, $\bar{y}(\lambda) S(\lambda)$ und $\bar{z}(\lambda) S(\lambda)$ in Abschnitt 10.1.1 tabelliert.

Bild 10_1 zeigt die Normspektralwerte für verschiedene Normierungen. In Tabelle 10_2 auf Seite 275 werden die Normspektralwerte mit der Normierung auf 100 für die Normlichtart *D65* angegeben. Die Normspektralwerte mit dieser Normierung sind im Bild 10_1 (*unten links*) angegeben.

Übungs-Aufgabe:

Berechnen Sie mit den Tabellen die Normfarbwerte *X*, *Y* und *Z* sowie die Normfarbwertanteile *x* und *y* von Optimalfarben, deren spektrale Reflexionsfaktoren bekanntlich nur die Werte 1,0 oder 0,0 annehmen. Benutzen Sie die Tabelle 10_3 auf Seite 276 für Wellenlängenintervalle von $\Delta \lambda = 20$ nm. Die folgenden Optimalfarben sind durch Änderungen der spektralen Reflexionsfaktoren bei 370 nm, 490 nm, 590 nm und 770 nm ausgezeichnet.

Berechnen Sie die Buntwerte A und B nach den Gleichungen:

$$A = (x / y - x_n / y_n) Y$$

 $B = -0.4 (z / y - z_n / y_n) Y$

Grund- und Mischfarben additiver Spektralfarben für Normlichtart D65									
Reflexionsfak-	Farbe:	Normfa	arbwert-	Normf	arbwert	e			
toren $R(\lambda) = 1$	Kurzbe-	anteile,	D65	2°, D65	5				
$\lambda_1 \dots \lambda_2$ in nm	zeichnung:	x	у	X	Y	Ζ			
drei additive Optimal-(Grundfarben:								
590 700	O (J80R)	0,	0,	,	,	,			
490 590	L(G10J)	0,	0,	,	,	,			
370 490	V(R80B)	0,	0,	,	• • • • • •	•••,••			
drei additive Optimal-N	Mischfarben:								
370 590	C (B30G)	0,	0,	,	,	,			
370 490, 590 770	M (R30B)	0,	0,	,	,	,			
490 770	Y(G90J)	0,	0,	,	• • • • • •	•••,••			
370 770	D65 (W)	0,	0,	,	100,00	,			

Tabelle 10_1 Normfarbwerte Optimalfarben

7340_3

Übungsaufgabe zur Berechnung der Normfarbwerte, Normfarbwertanteile und Buntwerte von Optimalfarben

Tabelle 10_1 zeigt eine Übungsaufgabe zur Berechnung der Normfarbwerte, Normfarbwertanteile und Buntwerte von Optimalfarben. Tragen Sie die Lage der berechneten Optimalfarben in die Normfarbtafel (x, y) ein!

- Was fällt beim Vergleich der Lage der verschiedenen Farborte auf?
- Begründen Sie die Lage dieser Optimalfarben in der Normfarbtafel (x, y)!
- Begründen Sie die Lage dieser Optimalfarben im Buntwertdiagramm (A, B)!

Norn	nspektralv	verte für de	en 2°-Beok	oachter 1	und Norm	lichtart D6	5
λ/nm	$\overline{x}(\lambda)S(\lambda)$	$\overline{y}(\lambda)S(\lambda)$	$\overline{z}(\lambda)S(\lambda)$	λ/nm	$\overline{x}(\lambda)S(\lambda)$	$\overline{y}(\lambda)S(\lambda)$	$\overline{z}(\lambda)S(\lambda)$
380	0,0065	0,0002	0,0305				
390	0,0219	0,0006	0,1036				
400	0,1121	0,0031	0,5316	600	9,0463	5,3739	0,0068
410	0,3767	0,0105	1,7958	610	8,5007	4,2648	0,0029
420	1,1879	0,0354	5,7060	620	7,0906	3,1619	0,0016
430	2,3292	0,0952	11,3678	630	5,0637	2,0889	0,0004
440	3,4574	0,2283	17,3426	640	3,5475	1,3861	0,0002
450	3,7222	0,4207	19,6198	650	2,1462	0,8100	0,0000
460	3,2416	0,6688	18,6069	660	1,2515	0,4629	0,0000
470	2,1245	0,9892	13,9998	670	0,6807	0,2492	0,0000
480	1,0489	1,5245	8,9165	680	0,3465	0,1260	0,0000
490	0,3296	2,1415	4,7895	690	0,1497	0,0541	0,0000
500	0,0507	3,3438	2,8158	700	0,0770	0,0278	0,0000
510	0,0949	5,1311	1,6138	710	0,0407	0,0147	0,0000
520	0,6275	7,0411	0,7760	720	0,0169	0,0061	0,0000
530	1,6867	8,7850	0,4297	730	0,0095	0.0034	0,0000
540	2,8689	9,4247	0,2005	740	0,0049	0,0018	0,0000
550	4 2652	9 7921	0.0861	750	0.0020	0.0007	0.0000
560	5 6256	9 4155	0.0369	760	0,0007	0,0003	0,0000
570	6 9448	8 6753	0,0191	700	0,0007	0,0005	0,0000
580	8 3066	7 8869	0,0150				
590	8,6143	6,3539	0,0092	Summe	e: 95,0188	100,0000	108,8244
Norn Norn	nfarbwert nfarbwert	e: anteile:		X = 95, x = 0,	0188 Y=1 3127 y=	00,0000 Z= 0,3291 z =	=108,8244 = 0,3582

10.1.1 Normspektralwerte für das Wellenlängenintervall 10 nm

Tabelle 10_2Normspektralwerte 10 nm

7341_7

Zur Berechnung der Normfarbwerte aus Normspektralwerten für den 2^o-Beobachter, für Normlichtart *D65* und für Wellenlängenintervalle von $\Delta \lambda = 10$ nm

Tabelle 10_2 dient zur Berechnung der Normfarbwerte aus Normspektralwerten für den 2^o-Beobachter, für Normlichtart *D65* und für Wellenlängenintervalle von $\Delta \lambda = 10$ nm.

Normspel	ktralwerte fü	r den 2°-Beob	achter und N	ormlichtart D65
Wellenlän	ge Normspekt	ralwerte, 2°, <i>L</i>	065, 20 nm	Bemerkungen
λ/nm	$\overline{x}(\lambda)S(\lambda)$	$\overline{y}(\lambda)S(\lambda)$	$\overline{z}(\lambda)S(\lambda)$	$S(\lambda) = S_{D65}(\lambda)$
380	0,0129	0,0004	0,0609	
400	0,2237	0,0062	1,0607	370 nm 490 nm
420	2,3701	0,0705	11,3849	Violettblau V
440	6,8984	0,4555	34,6028	
460	6,4678	1,3345	37,1255	
480	2,0929	3,0417	17,7907	
500	0,1012	6,6717	5,6183	
520	1,2519	14,0488	1,5483	
540	5,7242	18,8047	0,4001	490 nm 590 nm
560	11,2246	18,7863	0,0736	Laubgrün <i>L</i>
580	16,5738	15,7363	0,0298	
600	18,0496	10,7224	0,0136	
620	14,1475	6,3087	0,0031	
640	7,0782	2,7656	0,0003	
660	2,4970	0,9237	0,0000	590 nm 770 nm
680	0,6914	0,2513	0,0000	Orangerot O
700	0,1563	0,0555	0,0000	
720	0,0337	0,0122	0,0000	
740	0,0098	0,0035	0,0000	
760	0,0015	0,0005	0,0000	370 nm 770 nm
Summe: Weiß	95,6038	100,000	109,7126	Weiß <i>D</i> 65

10.1.2 Normspektralwerte (20 nm) für Optimalfarben-Berechnung

Tabelle 10_3Normspektralwerte 20 nm

7350_7

Zur Berechnung der Optimalfarben aus Normspektralwerten für den 2^o-Beobachter, für Normlichtart *D65* und für Wellenlängenintervalle von $\Delta \lambda = 20$ nm

Tabelle 10_3 dient zur Berechnung der Optimalfarben aus Normspektralwerten für den 2^o-Beobachter, für Normlichtart *D65* und für Wellenlängenintervalle von $\Delta \lambda = 20$ nm. Die Ergebnisse (Normfarbwerte und Normfarbwertanteile) müssen in Tabelle 10_1 auf Seite 274 eingetragen werden.

Grund- und Mischfarben additiver Optimalfarben für Normlichtart D65								
Grundfarbe oder	Normfa	rbwert-	Normfa	rbwerte				
Mischfarbe und	anteile							
Bezeichnung	x	У	X	Y	Ζ			
drei additive Optimal-	Grundfark	pen:						
O Orangerot	0,6695	0,3302	42,65	21,04	0,02			
L Laubgrün	0,2991	0,6351	34,87	74,04	7,67			
V Violettblau	0,1445	0,0393	18,06	4,90	102,02			
drei additive Optimal-	Mischfarb	en:						
C Cyanblau	0,2191	0,3268	52,94	78,96	109,70			
M Magentarot	0,3218	0,1375	60,73	25,95	102,04			
Y Gelb	0,4300	0,5274	77,53	95,09	7,69			
D65 (Weiß)	0,3131	0,3275	95,60	100,00	109,71			
Tabelle 10 4Normfarby	verte Optin	nalfarben. Re	chnung 20 nr	n	7310_3			

10.1.3 Normfarbwerte der Optimalfarben

Tabelle 10_4Normfarbwerte Optimalfarben, Rechnung 20 nm 7310_3 Normfarbwerte und Normfarbwertanteile der Optimalfarben für Normlichtart *D65* und den 2^o-Beobachter, berechnet mit $\Delta \lambda = 20$ nm

Tabelle 10_6 zeigt Normfarbwerte und Normfarbwertanteile der Optimalfarben für Normlichtart *D65* und den 2^o-Beobachter, berechnet mit $\Delta \lambda = 20$ nm.

Bild 10_2 Optimal-Grund- und Mischfarben in (x, y) 8331_80 Optimal-Grund- und Mischfarben für Normlichtart D65 in der Normfarbtafel (x, y)

Bild 10_2 zeigt Optimal-Grund- und Mischfarben für Normlichtart D65 in der Normfarbtafel (x, y).

10.2 Übung 2: Elementar- und Reproduktionsfarben

Tragen Sie in die Normfarbtafel ein:

- die Elementarfarben eines symmetrischen Bunttonkreises, siehe Abschnitt 10.2.1,
- die Grund- und Mischfarben des Farbfernsehens, siehe Abschnitt 10.2.2,
- die Grund- und Mischfarben des Mehrfarbendrucks, siehe Abschnitt 10.2.3.

Fügen Sie den Farbort von *D65* (x = 0,3127, y = 0,3290) hinzu. Was können Sie über die Lage der vier Elementarfarben *R*, *J*, *G* und *B* in bezug auf Unbunt *D65* und die Grund- und Mischfarben des Farbfernsehens und des Mehrfarbendrucks aussagen?

Zusätzlich können alle Farben im gleichabständigen Farbartdiagramm (a', b') eingezeichnet werden. Für die Farbarten a' und b', die dem CIELAB-Farbenraum für D65 zugeordnet werden, gilt:

$$a' = 0,2191 (x / y)^{1/3},$$
 $b' = -0,08376 (z / y)^{1/3}.$

Bild 10_3Farbfernseh-Grundfarben, Farbarttafel (a', b') 8240_7, 8240_8 PAL-Farbfernsehen in der Farbarttafel (a', b') mit Farbpaletten von jeweils 8 × 8 Farben in drei Farbbereichen (links) und kontinuierlich geordnet nach Buntton und Sättigung (rechts)

Bild 10_3 zeigt für das PAL-Farbfernsehen in der Farbarttafel (a', b') mit Farbpaletten von jeweils 8 × 8 Farben in drei Farbbereichen (*links*) und kontinuierlich geordnet nach Buntton und Sättigung (*rechts*).

Elementarfarben Gelb, Rot, Blau und Grün nach Miescher für D65						
Grundfarbe oder	Normfarbwert-		Normfa	Normfarbwerte		
Mischfarbe und	anteile					
Bezeichnung	x	У	X	Y	Ζ	
vier Elementarfarben:						
J Gelb	0,4449	0,4909		77,82		
R Rot	0,5813	0,3236		18,11		
B Blau	0,1701	0,1355		9,35		
G Grün	0,1890	0,4496		20,24		
D65 (Weiß)	0,3127	0,3291	95,01	100,00	108,85	

10.2.1 Elementarfarben nach Miescher

 Tabelle 10_5Normfarbwerte Elementarfarben

7320_7

Normfarbwertanteile und Normfarbwerte der Elementarfarben nach *Miescher* für die Normlichtart *D65* und den 2^o-Beobachter.

Tabelle 10_5 zeigt die Normfarbwertanteile und Normfarbwerte der Elementarfarben nach *Miescher* für die Normlichtart *D65* und den 2^o-Beobachter

Die Normfarbwerte X und Z können aus den Normfarbwertanteilen x und y sowie dem Hellbezugswert Y nach folgenden Formeln berechnet werden:

x = X / (X + Y + Z), y = Y / (X + Y + Z),z = Z / (X + Y + Z) = 1 - x - y.

Man beachte, daß sich mit der Tabelle 10_5 aus dem Normfarbwertanteil y und dem Hellbezugswert Y zunächst die Summe (X + Y + Z) berechnen läßt.

Bild 10_4Elementarfarben in Normfarbtafel (x, y) 8331_51 Elementarfarben von *Miescher* in der Normfarbtafel (x, y) im Vergleich mit Unbunt Tageslicht *D65*

Bild 10_4 zeigt Elementarfarben nach *Miescher* in der Normfarbtafel (x, y).

Grund- und Mischfarben des Normfarbfernseh-Prozesses nach DIN 6169							
Grundfarbe oder	Normfarbwert-		Normfarbwerte				
Mischfarbe und	anteile						
Bezeichnung	x	у	X	Y	Ζ		
drei additive Grundfarben:							
O Orangerot	0,6400	0,3300	43,03	22,19	2,02		
L Laubgrün	0,2900	0,6000	34,16	70,68	12,96		
V Violettblau	0,1415	0,0482	17,82	7,13	93,87		
drei additive Mischfarben:							
C Cyanblau	0,2197	0,3288	51,98	77,81	106,83		
M Magentarot	0,3270	0,1576	60,85	29,32	95,89		
Y Gelb	0,4172	0,5019	77,19	92,87	14,98		
D65 (Weiß)	0,3127	0,3291	95,01	100,00	108,85		
Tabelle 10 6Normfarbwerte Norm-Farbfernsehen					7310_71		

10.2.2 Grund- und Mischfarben des Norm-Farbfernsehens

Tabelle 10_6Normfarbwerte Norm-Farbfernsehen

Grund- und Mischfarben des Norm-Farbfernsehens nach DIN 6169 Teil 6 (vgl. Mayer, 1972)

Tabelle 10_6 zeigt die Grund- und Mischfarben eines Farbfernsehempfängers, der nach DIN 6169 Teil 6 normgerecht eingestellt ist (vgl. Mayer, 1972).

Bild 10_5Farbfernseh-Grundfarben in Normfarbtafel (x, y)8331_31 Farbfernseh-Grundfarben und CIE-Testfarben in der Normfarbtafel (x, y)

Bild 10_5 zeigt die Grund- und Mischfarben des Norm-Farbfernsehens in der Normfarbtafel (x, y). Zusätzlich sind die Farben der 17 CIE-Testfarben nach DIN 6169 "Farbwiedergabe" mit eingezeichnet.

Grund- und Mischfarben des Normfarbdruck-Prozesses nach DIN 16 539							
Grundfarbe oder Mischfarbe und	Normfarbwert- anteile		Normfa				
Bezeichnung	x	у	X	Y	Ζ		
drei subtraktive Grundfarben:							
C Cyanblau	0,1553	0,1967	16,92	21,44	70,62		
M Magentarot	0,4675	0,2314	33,88	16,77	21,82		
Y Gelb	0,4399	0,4925	68,13	76,28	10,48		
drei subtraktive Mischfarben:							
O Orangerot	0,6152	0,3226	30,51	16,00	3,08		
L Laubgrün	0,1958	0,5256	6,05	16,23	8,06		
V Violettblau	0,1807	0,1009	4,86	2,72	19,33		
NLC (Weiß)	0,3101	0,3162	98,07	100,00	118,22		

10.2.3 Grund- und Mischfarben des Norm-Druckprozesses

Tabelle 10_7Normfarbtafel Norm-Druckprozeß

7311_31

Grund- und Mischfarben des Norm-Druckprozesses nach DIN 16 539 mit der "Europäischen Farbskala nach dem Offsetdruckprozeß; Normdruckfarben"

Tabelle 10_7 zeigt die Grund- und Mischfarben des Norm-Druckprozesses, der nach DIN 16 539 mit der "Europäischen Farbskala nach dem Offsetdruckprozeß; Normdruckfarben" arbeitet.

Bild 10_6Normdruckfarben in Normfarbtafel (x, y) 8331_61 Subtraktive Grundfarben *C*, *M* und *Y* sowie die Mischfarben *O*, *L* und *V* des Standard-Mehrfarbendrucks in der Normfarbtafel (x, y)

Bild 10_6 zeigt die Grund- und Mischfarben des Norm-Druckprozesses in der Normfarbtafel (x, y).

Grund- und Mischfarben eines Test-Offset-Farbdruck-Prozesses						
Grundfarbe oder	Normfarbwert-		Normfarbwerte			
Mischfarbe und	anteile					
Bezeichnung	x	у	X	Y	Z	
drei subtraktive Grundfarben:						
C Cyanblau	0,1776	0,2510	20,04	28,32	64,46	
M Magentarot	0,4298	0,2320	29,94	16,17	23,56	
Y Gelb	0,4512	0,5000	62,08	68,74	6,75	
drei subtraktive Mischfarben:						
O Orangerot	0,6261	0,3368	21,57	11,60	1,28	
L Laubgrün	0,2416	0,5989	5,82	14,43	3,84	
V Violettblau	0,1890	0,1326	4,39	3,08	15,77	
D65 (weißes Papier, D65)) 0,3173	0,3337	77,74	81,79	85,43	
N (schwarze Druckfarbe)	0,3130	0,3258	4,12	4,29	4,75	

10.2.4 Grund- und Mischfarben eines Test-Druckprozesses

Tabelle 10_8Normfarbwerte Test-Druckfarben

7311_7

Grund- und Mischfarben eines realen Test-Druckprozesses nach DIN 16 539 mit der "Europäischen Farbskala nach dem Offset-Druckprozeß; Normdruckfarben"

Tabelle 10_8 zeigt die Grund- und Mischfarben eines realen Test-Druckprozesses, der nach DIN 16 539 mit der "Europäischen Farbskala nach dem Offset-Druckprozeß; Normdruckfarben" arbeitet.

Bild 10_7 zeigt Grund- und Mischfarben eines realen Druckprozesses in der Normfarbtafel (x, y).

10.3 Koordinaten der niederen Farbmetrik

Farbvalenzmetrische Größen (Farbwerte: lineare Koordinaten)				
Farbvalenzme- trische Größen	Bezeichnung und Zusammenhang mit Normfarbwerten / -anteilen	Bemerkungen:		
Hellbezugswert	$Y = y \left(X + Y + Z \right)$	Definition in:		
		CIEXYZ 1931		
Buntwert	für lineares Buntwertdiagramm (A, B)			
Rot–Grün	$A = [X / Y - X_n / Y_n] Y = [a - a_n] Y$	Definition		
	$= [x / y - x_n / y_n] Y$	Gegenfarbsystem		
Gelb–Blau	$B = -0,4[Z/Y-Z_n/Y_n]Y = [b-b_n]Y$			
	$= -0.4[z/y - z_n/y_n]Y$	n = D65 (Umfeld)		
radial	$C = [A^2 + B^2]^{1/2}$			
Sättigungswert	= Buntwert / Hellbezugswert			
Rot–Grün	$S_{a} = A / Y = X / Y - X_{n} / Y_{n}$	Definition		
	$= x / y - x_n / y_n = a - a_n$	Gegenfarbsystem		
Gelb–Blau	$S_{\rm b} = B / Y = -0.4 [Z / Y - Z_{\rm n} / Y_{\rm n}]$			
	$= -0,4[z/y - z_n/y_n] = b - b_n$			
radial	$S_{\rm c} = C / Y$			
	$= [(a - a_n)^2 + (b - b_n)^2]^{1/2}$			
Farbartwert	für lineare Farbtafel (a, b)			
Rot–Grün	a = X / Y = x / y	Definition		
Gelb–Blau	b = -0.4 [Z/Y] = -0.4 [z/y]	Gegenfarbsystem		
radial	$c = [(a - a_{n})^{2} + (b - b_{n})^{2}]^{1/2}$			

Tabelle 10_9Farbwerte der niederen FarbmetrikKoordinaten der niederen Farbmetrik oder Farbvalenzmetrik

7360_7

 Tabelle 10_9 zeigt die Koordinaten der niederen Farbmetrik oder Farbvalenzmetrik.

10.4 Koordinaten der höheren Farbmetrik

Farbempfindungsgrößen (Farbheiten: Kubikwurzel-Koordinaten)				
Farbempfin- dungsgrößen	Bezeichnung und Zusammenhang mit Normfarbwerten / -anteilen	Bemerkungen:		
Helligkeit	$L^* = 116 (Y / 100)^{1/3} - 16$ Näherung: $L^* = 100 (Y / 100)^{1/3}$	<i>Definition 1976 in:</i> <i>CIELUV und CIELAB</i>		
Buntheit	für nichtlineares Buntheitsdiagramm ((a*, b*)		
Rot–Grün	$a^* = 500 [(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$	Definition 1976 in:		
	$= 500 (a' - a'_n) Y^{1/3}$	CIELAB		
Gelb–Blau	$b^* = 200 [(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}]$			
	$= 500 (b' - b'_n) Y^{1/3}$	n = D65 (Umfeld)		
radial	$C^* = [a^{*2} + b^{*2}]^{1/2}$			
Sättigung	= Buntheit / Helligkeit			
Rot–Grün	$S_{\rm a}^* = a^* / [100 (Y / 100)^{1/3}]$	Definition für:		
	$= 21,6 (a' - a'_n)$	CIELAB 1976		
Gelb–Blau	$S_{\rm b}^* = b^* / [100 (Y / 100)^{1/3}]$			
	$= 21,6 (b' - b'_n)$			
radial	$S_{\rm c}^* = C^* / [100 (Y / 100)^{1/3}]$			
	= 21,6 [$(a' - a'_n)^2 + (b' - b'_n)^2$] ^{1/2}	2		
Farbart	für nichtlineare Farbarttafel (a', b')			
Rot–Grün	$a' = (1/X_n)^{1/3} (x/y)^{1/3}$	Definition für:		
	$= 0,2191 (x/y)^{1/3}$ für <i>D65</i>	CIELAB 1976		
Gelb–Blau	$b' = -0,4 (1/Z_n)^{1/3} (z/y)^{1/3}$	Farbarttafel (a', b')		
	$= -0,08376 (z/y)^{1/3}$ für <i>D65</i>	ähnlich (u', v')		
radial	$c' = [(a' - a'_n)^2 + (b' - b'_n)^2]^{1/2}$	von CIELUV 1976		

Tabelle 10_10Farbheiten der höheren Farbmetrik

7361_7

Koordinaten der höheren Farbmetrik oder Farbempfindungsmetrik

Tabelle 10_10zeigt Koordinaten der höheren Farbmetrik oder Farbempfin-
dungsmetrik.

Register

A

Abneysches Gesetz, 111 Adaptation, 113, 115, 134 Adobe-Photoshop, 253, 257 Amplituden-Modulation, 127 Auflösung, 236, 255 Aufnahmelichtart, 186 Aufsichtfarben, 107 Ausführungszeit, 232 Ausgabegerät, 236 Ausgleichsrechnung, 259

B

BAM-Btx-Leitseite, 184 Belichtung, 186 Benutzer-Koordinatensystem, 228 Beobachtungsgeometrie, 79 Betriebssysteme, 238 Beugungsgitter, 72 Bildmatrix, 230 Bildwiedergabe, 256, 259 Bild-Optimierung, 259 Brillantheit, 111 Buntaufbau, 158 Buntheit, 111 Buntheitsfülle, 106 Buntheitsreihe, 62 Buntschwelle, 143, 144 Buntwertanteil, 54

C

CEPT-Farben, 180 CEPT-Geometriegrafik, 176, 200 CEPT-Mosaikgrafik, 176, 200 CIEBasedABC-Farbraum, 239, 240, 241 CIELAB, 245 CIELAB-Farbabstand, 261 CIELAB-Farbatlas, 245 CIELAB-Farben, 248, 250 CIELAB-Farbenraum, 259 CIEXYZ-Normvalenzsystem, 259 CIE-Testfarben, 59, 90, 246, 252, 260, 261

D

Darbietungszeit, 104 Datenkompression, 206 DIN 6169 "Farbwiedergabe", 252, 260 Display-PostScript, 209, 232, 238 Doppel-Linienelement, 123 Dreifach-Linienelement, 125, 126 Druckerausgabe, 246

E

EBU-Standard, 242 Eigenfarbe, 53 Eindruckshelligkeit, 112 Elementarfarbe, 27, 33 Empfindlichkeit, 134, 137

F

Farbabstand, 252 Farbanzahl, 171 Farbartdiagramm (a',b'), 91 Farbarttafel, 136, 139 Farbausgabe, 233 Farbauswahl, 171 Farbauszug, 234 Farbband, 197 Farbbildabtastung, 186 Farbbildverarbeitung, 171 Farbcodierung, 126, 171, 174 Farbdiafilmschicht, 152

Farbdokumentenaustausch, 207 Farbdruck, 21 Farbenvielfalt, 23 Farbfilmmaterial, 20, 186 Farbfüllung, 228 Farbgrafik, 17 Farbheit, 239, 261 Farbkopierer, 262 Farbkörper, 25 Farbmanagement, 245, 254 Farbmaßzahlen, 261 Farbmatrixdrucker, 197, 198, 199 Farbmeßgerät, 260 Farbmessung, 75, 258 Farbmetrik, 121, 124 Farbmonitor, 189, 240, 242, 256, 258, 259, 260, 261 Farbmonitordarstellung, 246 Farboriginal, 20, 21 Farbraum-Transformation, 239, 254, 255, 259 Farbraum-Vorspann, 255 Farbschwelle, 97, 100, 122, 129 Farbseparation, 233 Farbsignale, 117, 126 Farbskalierung, 122 Farbspektrum, 33 Farbstreifen, 233, 234 Farbstufung, 171 Farbtemperatur, 70 Farbtoleranz, 87 Farbunterscheidung, 140 Farbvalenz, 73 Farbvalenzmetrische Auswertung, 71, 72, 273 Farbwert, 239 Farbwiedergabe, 17, 90, 244 Farbwiedergabe-Index, 189, 252, 261 Farb-Linienelemente, 121 Filmtestfarben, 153 Flächendeckung, 233

Fluoreszenz, 40 Foto-CD, 252, 256 Foto-CD-Bildwiedergabe, 256 Foto-CD-Datei, 253, 255 Foto-CD-Scanner, 252

G

Gammawert, 261 Gegenfarbensystem, 35, 36, 37 Gelb-Blau-Farbsignale, 119 Gerätegrundfarbe, 239 geräteunabhängig, 241 Geräte-Farbraum, 90 Geräte-Koordinatensystem, 228 Goniogeometrie, 80

H

Halogen-Lampe, 75 Hellbezugswert, 145 Hellempfindlichkeit, 110 Hellheit, 111 Helligkeit, 33 Helligkeitsfülle, 106 Hellschwellen, 144 Hellvalenz, 33 Helmholtz, 121 Helmholtz-Kohlrausch-Effekt, 112

I

Infeld-Leuchtdichte, 87, 104 Infrarot, 33 Interferenzfilter, 72 ISO-CIE-Güte, 240

J

J"-Empfindlichkeit, 131 J-Sättigungen, 137

K

Kennlinie, 189, 191

Kompensativfarbe, 53 Kontrast, 60 Kontrastumfang, 262 Konzentrationsreihe, 30

L

LABHNU1, 92 Leuchtdichte, 117, 121, 140, 144 Leuchtdichteschwelle, 143 Leuchtdichteumfang, 256 Leuchtheit, 111 Lichtfarbe, 107, 260 Lichtmetrik, 121, 124 Lichtquelle, 81 Linienelement, 123, 125 Linienraster, 233, 236 Literatur, 263 L*-Helligkeit, 248, 261

M

Mehrfarbendruck, 20 Meßgeometrie, 78 Monochromator, 81 Munsell-Farbsystem, 94

Ν

NeXTstep, 238, 253, 259, 260 Normfarbtafel, 44 Normfarbwerte, 44, 71 Normspektralwerte, 73 Norm-Farbfernsehen, 280 NTSC-Standard, 242 N-Sättigungen, 134

0

OLV*-Farbheit, 256, 257, 258, 259 OLV-Farbwert, 256, 259 Optimalfarben-Berechnung, 276 Optimierung, 259 Orientierung, 219 Original, 262 Original-Aufsichtfarben, 254 OSA-Farbsystem, 92

P

PostScript, 90, 238 PostScript-for-Schleife, 230 Prisma, 72 PSL2-Bilddatei, 257 PSL2-Farbdrucker, 238 PSL2-Farbraum, 241

Q

Quantisierung, 256

R

RAL-Design, 31, 245 Rasterabstand, 203 Rasterfrequenz, 234 Rasterpunktverbreiterung, 193, 232 Rasterstufen, 236 Rasterzelle, 219 Rasterzellen-Schwelldaten, 236 Rechteck-Grafikelemente, 228, 230 Referenzbilddatei, 257 Reflexionsfaktor, 38, 68 Reproduktionsverfahren, 147 Retroreflexion, 42 Rezeptorempfindlichkeit, 109, 130, 134 **RGB-Bilddaten**. 256 Rot-Grün-Farbsignal, 117

S

Sättigung, 134 Schnittstelle, 171 Schwarzheit, 111 Schwarzschwelle, 89 Schwarzwertanteil, 54 Schwarz-Standard, 81 Schwarz-Weiß-Prozeß, 107 Schwelle, 125, 126 Signal-Spannung, 240 Spaltverschiebung, 129 Spektralschablone, 128 Spektralvalenz, 73 Spektrometer, 81 Spektrometrie, 72 Strahlung, 58 Strokeadjust, 229 Stufung, 125, 126 symmetrische Farbarttafel, 136 symmetrische N-Sättigungen, 134

Т

TOSCA (Text and Office Systems Color Architecture), 90, 207 Transmissionsfaktor, 68

U

Übungsaufgaben, 273 Ultraviolett, 33 Umfeld-Leuchtdichte, 88, 104 Unbuntaufbau, 159 unbunte Farbe, 107 Unbunt-Schwelle, 88, 104 Unbunt-Signal, 123, 125 unsymmetrische Farbarttafel, 139 unsymmetrische J-Sättigung, 137 U"-Empfindlichkeit, 132 U-Empfindlichkeit, 111 U-Hellempfindlichkeit, 113

V

visuelle Prozesse, 89

W

Weißwertanteil, 54 Weiß-Standard, 80, 81 Wiedergabe, 262 Wiedergabe-Lichtfarben, 254 Winklung, 233 Workstation, 238

X

Xenon-Blitzlampe, 76 Xenon-Lampe, 75

Y

Y-Empfindlichkeit, 111

Ζ

Zweifach-Linienelement, 126